• Title/Summary/Keyword: Micro drop

Search Result 217, Processing Time 0.025 seconds

Studies on the Evaporative Heat Transfer Characteristics and Pressure Drop of CO2 Flowing Upward in Inclined (45°) Smooth and Micro-fin Tubes (경사평활관 및 마이크로핀관에서의 이산화탄소의 증발열전달 특성과 압력강하에 관한 실험적 연구)

  • Kim, Yong-Jin;Cho, Jin-Min;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.612-620
    • /
    • 2008
  • New alternative refrigerants have been developed due to the ozone layer depletion and global warming. For this reason, carbon dioxide is believed to be a promising refrigerant for use in air conditioners and heat pumps. Evaporative heat transfer characteristics and pressure drop of $CO_2$ with outer diameter of 5 mm in inclined ($45^{\circ}$) smooth and micro-fin tubes have been investigated by the experiments with respect to several test conditions such as mass fluxes, heat fluxes, evaporation temperatures in this study. The inclined ($45^{\circ}$) smooth and micro-fin tubes with length of 1.44 m were installed to measure the evaporative heat transfer coefficients of $CO_2$ and heat was supplied to the refrigerant by direct heating method where the test tube was uniformly heated by electricity. The tests were conducted at mass fluxes from 212 to $656\;kg/m^2s$, heat fluxes from 15 to $60\;kW/m^2$ and evaporation temperatures from -10 to $20^{\circ}C$. The heat transfer coefficients of $CO_2$ are slightly increased with increasing mass flux, and the heat transfer characteristics in the inclined ($45^{\circ}$) tubes are enhanced about $5{\sim}10%$ compared with those in horizontal or vertical tubes.

EFFECTS OF VARIOUS SURFACE TREATMENTS FOR TITANIUM ON SURFACE MICRO ROUGHNESS, STATIC WETTABILITY, FIBRONECTIN ADSORPTION (표면 처리 방법에 따른 타이타늄의 미세 표면 거칠기, 표면 젖음성, fibronectin 흡착량에 미치는 영향)

  • Shin Hwa-Sub;Kim Young-Su;Shin Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.443-454
    • /
    • 2006
  • Purpose: This study aims to get the fundamental data which is necessary to the development direction of implant surface treatment hereafter, based on the understanding the surface structure and properties of titanium which is suitable for the absorption of initial tissue fluid by researching effects of additional surface treatments fir sandblasted with large git and acid-etched(SLA) titanium on surface micro-roughness, static wettability, fibronectin adsorption Materials and Method: In the Control groups, the commercial pure titanium disks which is 10mm in diameter and 2mm in thickness were treated with HCI after sandblasting with 50$\mu$m $Al_2O_3$. The experiment groups were made an experiment each by being treated with 1) 22.5% nitric acid according to SLA+ASTM F86 protocol, 2) SLA+30% peroxide, 3) SLA+NaOH, 4) SLA+ Oxalic acid, and 5) SLA+600$^{\circ}C$ heating. In each group, the value of Ra and RMS which are the gauges of surface roughness was measured, surface wettability was measured by analyzing with Sessile drop method, and fibronectin adsorption was measured with immunological assay. The significance of each group was verified by (SPSS, ver.10.0 SPSS Inc.) Kruskal-Wallis Test. (α=0.05) And the correlation significance between Surface micro-roughness and surface wettability. surface roughness and fibronectin adsorption, and surface wettability and fibronectin adsorption was tested by Spearman's correlation analysis. Result: All measure groups showed the significant differences in surface micro-roughness, surface wettability, and fibronectin adsorption. (p<0.05) There was no significance in correlation among the surface micro-roughness, surface wettability, and fibronectin adsorption. (p>0.05) Conclusion: Surface micro-roughness and surface wettability rarely affected the absorption of initial tissue fluid on the surface of titanium.

A Study on the Application of Micro Hydro Power Generator at the Water Treatment Plant (정수장 마이크로 소수력 발전기 적용에 대한 연구)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.67-72
    • /
    • 2014
  • Inflow or outflow from the water treatment plant and the sewage water has potential energy. If this potential energy can be converted into electrical energy by water turbine generator, it can help to save energy because of the high capacity utilization. So recently, micro hydro power plant is reviewed in the water treatment facility. If generation capacity is low, induction generator is primarily used. If output capacity is low, generated power is supplied to the inside load. Induction generator can cause voltage drop by the inrush current at a start-up and requires reactive power for magnetization. In this study, we analyzed the flow of power and voltage variation against inrush current that occurs when the induction generator starts under the terms that loads of linear and non-linear of the water purification plant are used. Analysis results are that the voltage drop is within an allowable range and the power factor is slightly reduced by the need of reactive power.

Vitrification of Bovine Immature Oocytes using Microdrop Method

  • Park, H.S.;Kim, D.H.;Kim, S.W.;Yang, B.C.;Im, G.S.;Hwang, I.S.;Seo, J.S.;Yang, B.S.;Moon, S.J.;Chang, W.K.
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.258-258
    • /
    • 2004
  • Successful cryopreservation of mammalian oocytes would provide a source of materials for in vitro embryo production. This study was conducted to determine vitrification conditions for bovine immature oocytes using micro-drop method and, to examine maturation, fertilization and development of vitrified bovine immature oocytes. (omitted)

  • PDF

An Experimental Study on the Performance of Diffusion Bonding Heat Exchangers (확산접합 콤팩트 열교환기의 성능에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the micro channel heat exchangers using diffusion bonding technology. Four types of heat exchangers are designed and manufactured, which are straight type, long dot type, splited wavy type and straight double side type. Heat transfer and pressure drop performance of each heat exchangers are measured in various operating conditions, and compared each other. The results show that the $(j/f)^{1/3}$ performance of splited wavy type and long dot type increases about 10.3% and 6.1% at the Reynolds number 470 compared to that of straight type, respectively. On the other hand, $(j/f)^{1/3}$ performance of straight double side type decreases 19.7%.

An Experimental Study on the Performance of Diffusion Bonding Heat Exchangers (확산접합 콤팩트 열교환기의 성능에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Cha, Dong-An;Choi, Mi-Jin;Yun, Jae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2304-2309
    • /
    • 2008
  • The objectives of this paper are to study the characteristics of heat transfer and pressure drop of the micro channel heat exchangers using diffusion bonding technology. Four types of heat exchangers are designed and manufactured, which are straight type, long dot type, splited wavy type and straight double side type. Heat transfer and pressure drop performance of each heat exchangers are measured in various operating conditions, and compared each other. The results show that the $(j/f)^{1/3}$ performance of splited wavy type and long dot type increases about 10.3% and 6.1% at the Reynolds number 470 compared to that of straight type, respectively. On the other hand, $(j/f)^{1/3}$ performance of straight double side type decreases 19.7%.

  • PDF

An Experimental Study on Heat transfer Characteristics in Micro Plate Heat Exchangers with Counter flow of Microchannel (대향류 마이크로 채널 판형 열교환기의 열전달 특성 실험적 연구)

  • Seo, Jang-Won;Kim, Yoon-Ho;Moon, Chung-Eun;Lee, Kyu-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.229-234
    • /
    • 2007
  • Microscale heat transfer and microfluidics have become increasingly important to overcome some very complex engineering challenges. The use of very small passages to gain heat transfer enhancement is a well documented method for achieving high heat flux dissipation. As the passage size is decreased, the heat transfer performance increases but the pressure drop increases sharply when the passage size is reduced. In this study, the performance evaluation of micro plated heat exchangers under the counter flows with straight, V-shaped and Y-shaped channel are carried out.

  • PDF

The Variation of Electrical Characteristics of PV Module due to Mechanical Stress (기계적 스트레스에 의한 태양전지모듈의 전기적 특성변화)

  • Kong, Ji-Hyun;Ji, Yang-Geun;Kang, Gi-Hwan;Kim, Kyung-Su;Yu, Gwon-Jong;Ahn, Hyung-Kuen;Han, Deuk-Young
    • New & Renewable Energy
    • /
    • v.6 no.1
    • /
    • pp.38-45
    • /
    • 2010
  • Abstract Under the physical stress on photovoltaic (PV) module, it will be warped according to elongation of the front glass and then micro-crack will be occurred in the thermally sealed solar cell. This micro-crack leads to drop of short circuit current of the PV module. This is because of increase of resistance component by micro-crack. Micro-crack at specific solar cell in the module lessens the durability of PV module with reduced output, hot-spot caused by solar cell output mismatch and increased resistance component. This study shows the relation between electrical characteristics and micro- cracks due to mechanical stress on PV module.

Flow Properties of Micro Column Packed with Perfusive Particles (투과성 입자로 이루어진 미세 칼럼의 유동 특성)

  • Kim, Duck-Jong;Hwang, Yun-Wook;Park, Sang-Jin;Heo, Pil-Woo;Yoon, Eui-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.89-93
    • /
    • 2005
  • In this work, perfusive particles are used to form a micro column in a microfluidic chip and flow properties of the micro column are investigated. The packing flow velocity and the column/particle size ratio are shown to be important parameters affecting the packing density of the micro column. Experimental results show that the effect of the column/particle size ratio on the flow resistance of the micro column is negligible. This contrasts with previous works on the effect of the column/particle size ratio on the total pressure drop across the column.

  • PDF

Fabrication of MEMS Inkjet Head for Drop-on-Demand Ejection of Electrostatic Force Method (정전기력 방식의 Drop-on-Demand 토출을 위한 MEMS 잉크젯헤드 제작)

  • Son, S.U.;Kim, Y.M.;Choi, J.Y.;Ko, H.S.;Kim, Y.J.;Byun, D.Y.;Lee, S.H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1441-1444
    • /
    • 2007
  • This paper presents a novel electrostatic drop-an-demand ejector with a conductive pole inside nozzle. The MEMS fabricated pole-type nozzle shows a significant improvement in the performance and reliability of forming meniscus and generating a micro dripping mode of droplet out of the meniscus. It is verified experimentally that the use of the pole-type nozzle. The liquid is used D20+SDS+SWNT (5 %wt). The gap between upper electrode and nozzle is about 600 um. Electrostatic drop-an-demand ejection is observed when a DC voltage of 1.5 kV is applied between the control electrode and ground electrode. Droplet diameter is $100{\mu}m$.