• Title/Summary/Keyword: Micro channel pattern

Search Result 28, Processing Time 0.024 seconds

Micro Mold Fabrication and the Micro Patterning by RTP Process (Micro Mold 제작 및 RTP 공정에 의한 미세 패턴의 성형)

  • Kim H. K.;Ko Y. B.;Kang J. J.;Rhim S. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.294-297
    • /
    • 2004
  • RTP(Rapid Thermal Pressing) is to fabricate desired pattern on polymer substrate by pressing patterned mold against the substrate heated around glass transition temperature. For a successful RTP process, the whole process including heating, molding, cooling and demolding should be conducted 'rapidly' as possible. As the RTP process is effective in replicating patterns on flat large surface without causing shape distortion after cooling, it is being widely used for fabricating various micro/bio application components, especially with channel-type microstructures on surface. This investigation finally aims to develop a RTP process machine for mass-producing micro/bio application components. As a first step for that purpose, we intended to examine the technological difficulties for realizing mass production by RTP process. Therefore, in the current paper, 4 kinds of RTP machines were examined and then the RTP process was conducted experimentally for PMMA film by using one of the machines, HEX 03. The micro-patterned molds used for RTP experiment was fabricated from silicon wafer by semi-conduct process. The replicated micro patterns on PMMA films were examined using SEM and the causes of defect observed in the replicated patterns were discussed.

  • PDF

Precision assessment of micro abrasive jet machining result on glass by using thick SU-8 as a mask (SU-8 마스크를 이용한 유리의 입자분사 미세가공 정밀도 평가)

  • Saragih A.S.;Ko T.J.;Kim H.S.;Park Y.W.;Lee I.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.493-494
    • /
    • 2006
  • SU-8 can be implemented as a mask for micro Abrasive Jet Machining (micro-AJM) process [1]. In this paper, we will evaluate the quality of micro grooving result on glass substrate by micro-AJM process which using SU-8 as a mask. It was evaluated on width and edge profile of the micro grooving. The result was having distortion compare with the master film used to pattern the SU-8 mask. The value of distortion with other properties which came along with it, such as depth and surface roughness, can be optimized in order to fabricate micro-channel for micro-fluidic application.

  • PDF

Development of Multi-Array Electrode and Programmable Multi-channel Electrical Stimulator for Firing Trigger Point of Myofascial Pain Syndrome (근막통증증후군의 통증유발점 치료를 위한 멀티어레이 전극과 프로그램 가능한 다채널 전기자극기 개발)

  • Kim, SooHong;Kim, SooSung;Jeon, GyeRok
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.221-227
    • /
    • 2015
  • In this study, Multi-Array Electrodes (MAE) and Programmable Multi-channel Electrical Stimulator (PMES) were implemented for firing Trigger Points (TPs) of the patient with Myofascial Pain Syndrome (MPS). MAE has 25 Ag/AgCl electrodes arranged in the form of array ($5{\times}5$) fabricated with flexible pad, which are applicable to be easy-attached to curved specific region of the human body. PMES consisted of 25 channels. Each channel was to generate various electric stimulus patterns (ESPs) by changing the mono-phasic or bi-phasic of ESP, On/Off duration of ESP, the interval between ESP, and amplitude of ESP. PMES hardware was composed of Host PC, Stimulation Pattern Editing Program (SPEP), and Multi-channel Electrical Stimulator (MES). Experiments were performed using MAE and PMES as the following. First experiment was performed to evaluate the function for each channel of Sub- Micro Controller Unit (SMCU) in MES. Second experiment was conducted on whether ESP applied from each channel of SMCU in PMES was focused to the electrode set to the ground, after applying ESP being output from each channel of SMCU in PMES to MAE.

Design and Fabrication of a Micro-Heat Pipe with High-Aspect-Ratio Microchannels (고세장비 미세채널 기반의 마이크로 히트파이프 설계 및 제조)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.164-173
    • /
    • 2006
  • The cooling capacity of a micro-heat pipe is mainly governed by the magnitude of capillary pressure induced in the wick structure. For microchannel wicks, a higher capillary pressure is achievable for narrower and deeper channels. In this study, a metallic micro-heat pipe adopting high-aspect-ratio microchannel wicks is fabricated. Micromachining of high-aspect-ratio microchannels is done using the laser-induced wet etching technique in which a focused laser beam irradiates the workpiece placed in a liquid etchant along a desired channel pattern. Because of the direct writing characteristic of the laser-induced wet etching method, no mask is necessary and the fabrication procedure is relatively simple. Deep microchannels of an aspect ratio close to 10 can be readily fabricated with little heat damage of the workpiece. The laser-induced wet etching process for the fabrication of high-aspect-ratio microchannels in 0.5mm thick stainless steel foil is presented in detail. The shape and size variations of microchannels with respect to the process variables, such as laser power, scanning speed, number of scans, and etchant concentration are closely examined. Also, the fabrication of a flat micro-heat pipe based on the high-aspect-ratio microchannels is demonstrated.

Flow Near the Meniscus of a Pressure-Driven Water Slug in Microchannels

  • Kim Sung-Wook;Jin Song-Wan;Yoo Jung-Yul
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.710-716
    • /
    • 2006
  • Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion.

The Characteristics of Wet Etch Process for Sub-micron Channel pattern with High Aspect Ratios (고 종횡비의 미세 채널 패턴에서의 습식 식각 특성 분석)

  • Lee, Chun-Su;Choe, Sang-Su;Baek, Jong-Tae;Yu, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.208-214
    • /
    • 1995
  • In order to study on the penetrations of HF solution acording to the geometrical shrinkage of contact-hole pattern size, the wet etch characteristics for oxide in microchannel patterns was investigated. Microchannel patterns of LPCVD oxide surrounded by nitride film, with dimensions of 0.1~1$\mu\textrm{m}$ height and 0.1~20$\mu\textrm{m}$, width, were fabricated. And the etch rates of oxide in HF solution were observed. It was found that oxide etch rate for micro-channel patterns in HF was not affected by pattern sizes and initial aspect ratios up to $0.1 \times 0.1 \mu \textrm{m}^{2} size and 1.2$\mu\textrm{m}$ depth. Finally, it was concluded that there were no special limitations for penetrations of HF solution in wet processes according to the geometrical shrinkage of contact-hole pattern size.

  • PDF

Analysis of the micro diffuser/nozzle pump performance of steady states using similitude model and simulations (상사 모델과 전산 수치 해석을 이용한 diffuser/nozzle pump 의 정상 상태에 대한 연구)

  • Park, Sung-Hoon;Kauh, S.-Ken
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2763-2768
    • /
    • 2007
  • Recently, as the semiconductor production technology develops, there has been growing interest in the cooling system using micro fluid pump. Among the various types of micro fluid pump, the valve-less diffuser/nozzle has been extensively studied in recent years. However, the flat-walled diffuser/nozzle flow has not been clearly looked into due to its non-linear characteristics. In this paper, the flow characteristics of the flat-walled diffuser/nozzle have been analyzed using similitude model and simulations. Similitude models are designed so that the flow pattern is same as that of 1/10 scale flow by using high viscous fluid as working fluid. The results are compared to the simulations. It is shown that the flow characteristics of 2D simulation are different from 3D simulations at high Re region, and the measured pump efficiency is highly dependent on the pressure difference as well as the channel geometry. From these results, the desirable conditions for the efficient pump is discussed.

  • PDF

Electrochromic Pattern Formation by Photo Cross-linking Reaction of PEDOT Side Chains

  • Kim, Jeong-Hun;Kim, Yu-Na;Kim, Eun-Kyoung
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.791-796
    • /
    • 2009
  • An electrochemically and photochemically polymerizable monomer, 2-((2,3-dihydrothieno[3,4-b] [1,4]dioxin-2-yl)methoxy)ethyl methacrylate (EDOT-EMA), was explored for patterning of poly(3,4-ethylenedioxythiophene) (PEDOT) via side chain cross-linking. The polymer from EDOT-EMA was deposited electrochemically to produce polymeric EDOT (PEDOT-EMA), which was directly photo-patterned by UV light as the side EMA groups of PEDOT-EMA were polymerized to give cross-linked EMA (PEDOT-PEMA). Absorption and FTIR studies of the UV-exposed film (PEDOT-PEMA) indicated that the photo-patterning mainly originated from the photo cross-linking of the methacrylates in the side-chain. After irradiation of the film, the conductivity of the irradiated area decreased from $5.6{\times}10^{-3}$ S/cm to $7.2{\times}10^{-4}$ S/cm, possibly due to bending of the conductive PEDOT channel as a result of the side chain cross-linking. The patterned film was applied to a solid state electrochromic (EC) cell to obtain micro-patterned EC cells with lines up to 5 ${\mu}m$ wide.

An Experimental Study on the Improvement of Microscopic Machinability of Glass using the Discharging Peak Control Techniques in the Electrochemical Discharge Machining Technologies

  • Chang, In-Bae;Kim, Nam-Hyeock;Kim, Byeong-Hee;Kim, Heon-Young
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.315-316
    • /
    • 2002
  • Electrochemical discharge machining is a very recent technique for non-conducting materials such as ceramics and glasses. ECDM is conducted in the NaOH solution and the cathode electrode is separated from the solution by $H_2$ gas bubble. Then the discharge is appeared and the non-conductive material is removed by spark and some chemical reactions. In the ECDM technology, the $H_2$ bubble control is the most important factor to stabilize the discharging condition. In this paper, we proposed the discharge peak monitoring/ discharging duty feedback algorithms for the discharge stabilization and the feasibility of this algorithm is verified by various pattern machining in the constant preload conditions for the cathode electrode.

  • PDF