• Title/Summary/Keyword: Micro behavior

Search Result 1,044, Processing Time 0.026 seconds

The Effect of Fatigue Crack Behavior on the Variable Depth of Micro Hole Defects in SM20C at the Symmetric Position (대칭위치에 존재하는 미소원공결함의 깊이변화가 SM20C의 피로균열거동에 미치는 영향)

  • 송삼홍;김성태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.856-860
    • /
    • 2002
  • The main objective of this study is to consider the effect of fatigue crack behavior on the variable depth of micro hole defects in SM20C at the symmetric position. The fatigue crack propagation test is performed by rotary bending fatigue test machine. The relationship between crack length(2a), cycles(N) and crack growth rate(da/dN) are investigated in this study. The result from the rotary bending fatigue test under the applied stress at 250MPa turned out that the fatigue life illustrated almost constant when the depth of symmetric micro hole deflects is both part A and B at the hope depth(h) = 0.5mm.

  • PDF

Design Approach and Structural Analysis for Development of a Micro-Wear Tester (마이크로 마모 시험기 개발을 위한 설계 방안 및 구조 해석)

  • Yoo, Shin-Sung;Kim, Dae-Eun
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • The tribological behavior of microsystems needs to be clearly understood in order to improve the reliability of precision components. For example, friction and wear phenomena pose serious problems in MEMS applications. As a first step to investigate the tribological behavior of such systems, an appropriate testing system must be acquired. In this work, a micro-wear tester based MEMS platform was designed. The main concern was to achieve a desirable range of horizontal displacement for the specimen holder and also to apply a normal force in the tens of ${\mu}N$ range. The structural analysis of the micro-wear tester showed that the proposed design satisfied these requirements while maintaining the structural integrity.

Prediction of Frictional behavior according to geometrical contact condition using FFT-based analysis (FFT해석을 이용한 기하학적 접촉조건에 따른 마찰거동예측)

  • 성인하;이형석;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.13-18
    • /
    • 2001
  • In this paper, FFT(Fast Fourier Transform) analysis of friction was suggested as a method to interpret the contact conditions. Micro-grooves with various dimensions were fabricated on the silicon surface to investigate the frictional behavior with respect to the change in geometrical contact condition. Frictional forces between micro-grooved surfaces and spheres modeled as surface asperities were measured using a micro-tribotester which was built inside a SEM(Scanning Electron Microscope). The experimental results show that the relative dimensions and distributions of contact asperities between two surfaces can be predicted by the power spectrum and the main frequency in FFT-based analysis of friction coefficient. Also, it was shown that the friction coefficient for multi-asperities was the result of the superposition of that for each asperity.

  • PDF

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

  • Darvishvand, Amer;Zajkani, Asghar
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.223-232
    • /
    • 2019
  • Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.

Explicating Factors explaining Self-Disclosure in the Usage of Micro-blog (마이크로 블로그 사용자의 자기노출에 영향을 미치는 요인에 관한 연구)

  • Lee, Sung-Joon;Kim, Yong-Won;Lee, Bong Gyou
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.127-136
    • /
    • 2011
  • The current study aims to examine what determinants have influences on voluntary self-disclosure in the usage of micro-blogging. Even though the usages of micro-blogging have increased at an exponential rate in South Korea, it has been not well understood the process in which people voluntarily disclose their self-information. In this regard, we tried to examine self-disclosure process on micro-blogging based on Theory of Planned Behavior (TPB). For this purpose, attitudes towards self-disclosure, subjective norm, and perceived behavioral control were set as the antecedents to self-disclosure behavior. The influences of factors including privacy concern, playfulness, informational motivation for social participation, and relational motivation on the attitude were also investigated. The results of an online survey revealed that attitude toward self-disclosure, subjective norm, and perceived behavioral control anticipated the self-disclosure behavior at a statistically significant level. The attitude was not influenced by privacy concern, informational and relational motivation, but by playfulness. The implications of these results are also discussed.

Modelling of Large Triaxial Test with Rockfill Materials by Distinct Element Method (개별요소법에 의한 락필재료의 대형삼축압축시험 모델링)

  • Jeon, Je-Sung;Kim, Ki-Young;Shin, Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.111-120
    • /
    • 2006
  • In this research, numerical simulations by PFC considering discrete element method are conducted to predict experimental results of large triaxial compression test with rockfill material for dam construction. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. To predict stress-stain behavior of large triaxial test, discrete particle modelling is applied with micro parameters which are chosen by calibration process. It is expected that distinct particle modelling method could be used as a useful tool to investigate micro and macro behavior associated with geotechnical problems and develop a numerical laboratory.

Fatigue Crack Initiation and Propagation From Two Micro Hole Defects (두개의 미소원공결함에서의 피로크랙발생과 전파에 관한 연구)

  • Song, Sam-Hong;Bae, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.842-849
    • /
    • 1997
  • The aim of this study is an investigation of the interaction of two micro hole defects affecting fatigue crack initation life and propagation behavior. The locatio of two micro hole defects was considered as an angle of alignment and the distance between the centers of two micro hole defects. The fatigue cracking behavior is experimented under bending. When micro defects are located close to each other, the fatigue crack initiation lives are varied with their relative locations. In the experiments, the area of local plastic strain strongly played a role in the fatigue crack initiation lives. Therefore we introduce a parameter which contains the plastic deformation area at stress concentrations and propose a fatigue crack initiation life prediction curve. In addition, the directions and propagation rates of fatigue cracks initiated at two micro hole defects are studied experimentally.

A Study on Friction Behavior of Textured Surface in Unlubricated State (무윤활 상태에서 미세공이 가공된 표면의 마찰거동에 관한 연구)

  • Oh, Seok-Ju;Kim, Sung-Gi;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.4
    • /
    • pp.217-224
    • /
    • 2009
  • In this study, friction tests were carried out in order to investigate the friction behavior of textured surface in unlubricated state using ball-on-disk type apparatus. Test specimens were SUJ2 bearing steel ball and SM45C steel disk. Square arrays of circular micro-dimples were created on the surface of disk specimen by Nd:YAG Laser. Friction tests were performed for the disk specimen with various micro-dimple parameters and was also conducted for the variation of normal loads and relative velocities. The results showed that fiction coefficient of textured surface was lower than that of non-textured surface and the deeper depth of micro-dimple was, the lower friction coefficient obtained at the same diameter of micro-dimple in unlubricated state. Area density of micro-dimple had an effect on the friction coefficient. It was also found that friction coefficient generally decreased with the increase of normal load and relative velocity.

High Strain-rate Deformation Behavior of NiAl/Ni Micro-laminated Composites (NiAl/Ni 미세적층복합재료의 고속변형거동)

  • Kim Hee-Yeoun;Kim Jin-Young;Jeong Dong-Seok;Enoki Manabu;Hong Soon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.237-240
    • /
    • 2004
  • High strain-rate deformation behavior of NiAl/Ni micro-laminated composites was characterized by split hopkins on pressure bar(SHPB). When the strain rate increased, the compressive stress of micro-laminated composites were increased a little. When the intermetallic volume fraction increased, the compressive stress of micro-laminated composites increased linearly irrespective of strain rate. Absorbed energy during the quasi-static and SHPB tests was calculated from the integrated area of stress-strain curve. Absorbed energy of micro-laminated composites deviated from the linearity in terms of the intermetallic volume fraction but merged to the value of intermetallic as the strain rate increased. This was due to high tendency of intermetallic layer for the localization of shear deformation at high strain rate. Microstructure showing adibatic shear band(ASB) confirmed that the shear strain calculated from the misalignment angle of each layer increased and ASB width decreased when the intermetallic volume fraction. Simulation test impacted by tungsten heavy alloy cylinder resulted that the absorbed energies multiplied by damaged volume of micro-laminated composites were decreased as the intermetallic volume fraction increased. Fracture mode were changed from delamination to single fracture when the intermetallic volume fraction and this results were good matched with previous results[l] obtained from the fracture tests.

  • PDF

Droplet transient migration and dynamic force balance mechanism on vibration-controlled micro-texture surfaces

  • Xu, Jing;Liu, Guodong;Lian, Jiadi;Ni, Jing;Xiao, Jing
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1368-1374
    • /
    • 2018
  • In this paper, forced vibration was used to regulate the droplet migration, fully recording the transient migration of droplets on a micro-textured substrate under the resonance frequency by a high-speed camera. The influence of resonance frequency and dynamic migration characteristics of droplets on the solid micro-texture surface under lateral vibration were researched. The experiment demonstrates that the driving force is caused by the difference between the left and right contact angles made the droplet oscillate and migrate, and as time t increases, the left and right contact points are periodically shifted and the amplitude of migration increases. Therefore, based on the droplet migration behavior and its force balance mechanism, a spring vibration model of migration behavior of the vibrating droplet micro unit was set up to predict the complete trajectory of its migration on a solid surface. The calculation results show that the theoretical displacement is less than the experimental displacement, and the longer the time, the larger the difference. Affected by the vibration, part of the droplet permeates through the micro-texture, resulting in the droplet losing height and the contact angle becoming smaller as well. While the other part of droplet overcomes the internal surface tension to migrate.