• Title/Summary/Keyword: Micro bearing

Search Result 233, Processing Time 0.027 seconds

ANALYSIS OF FLUID CHARACTERISTICS OF THRUST BEARING ON MILLIMETER-SCALE MICRO GAS TURBINE (초소형 가스 터빈용 스러스트 베어링 내의 유동특성 해석)

  • Seo, J.H.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.258-262
    • /
    • 2010
  • Since MEMS based micro actuators or generating devices showed high efficiency per volume, plenty of research are ongoing. Among them, MEMS based millimeter-scale micro gas turbine is one of the most powerful item for replacing chemical batteries. However, due to MEMS manufacturing technique, it is very difficult that makes wide turbine bearing area. It causes low DN number, so sufficient bearing force is hard to achieve. Thus, the most important issue on micro gas turbine is to design the proper bearing which can keep rotor stable during operation. In order to that, micro-scale gas-lubricated bearing is generally used. In this paper, basic feasibility study of thrust bearing of 10mm diameter turbine is described. Thrust bearing is hydrostatic gas-lubricated type. Numerical simulation is performed with ANSYS CFX 11.0 which is commercial numerical tool. Relationship between bearing inlet pressure and mass flow rate and bearing force is figured while changing bearing gap and number of capillaries. The simulation results will be used for further design of micro gas turbine.

  • PDF

Analysis of Response Characteristics of journal bearing on Millimeter-scale Micro Gas Turbine using Fluid numerical simulation (초소형 가스 터빈용 저널 베어링 내 유동장 수치해석을 통한 응답특성 분석)

  • Seo, J.H.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.387-391
    • /
    • 2011
  • Since MEMS based micro actuators or generating devices have high efficiency per volume, plenty of research are ongoing. Among them, MEMS based millimeter-scale micro gas' turbine is one of the most powerful issue for replacing chemical batteries. However, since limiting of MEMS manufacturing technique, it is very difficult that makes wide turbine bearing area. It causes low DN number, so sufficient bearing force is hard to achieve. Thus, the most important issue on micro gas turbine is proper bearing design which can keep rotor stable during operation. In order to that, micro-scale gas-lubricated bearing is generally used. In this paper, basic feasibility study and design of journal bearing for 10mm diameter micro gas turbine is described Journal bearing is hydrostatic gas-lubricated type. Numerical simulation is performed with ANSYS CFX 11.0 which is commercial numerical tool. Repulsive force when there is radial displacement in bearing and returning time is calculated using steady and unsteady cases. Auto re-meshing technic is used for moving mesh unsteady cases which simulate displacement of axis and its movement. The simulation results are used for further design of micro gas turbine, and experiment will be done later.

  • PDF

Characteristics of a Coupled Gas Lubricated Bearing for a Scaled-Up Micro Gas Turbine

  • Lee, Yong Bok;Kwak, Hyunduck;Kim, Chang Ho;Jang, Gun Hee
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2000
  • In case of the limitation of Deep RIE fabrication far Micro Gas Turbine, bearing aspect ratio is limited in very small value. The characteristics such as pressure distribution, load capacity and non-linearity of a short bearing of L/D=0.083 and a conventional bearing of L/D=1.0 with coupled boundary effects are investigated for Micro Gas Turbine bearings. The coupled effect was analyzed by mass conservation at coupled end area. The results, increasing load capacity and non-linearity due to the coupled effect of thrust and journal bearing, are obtained and the selection of journal bearing type is discussed.

  • PDF

Coupled Boundary Effects on a Gas Lubricated Bearing far a Scaled-Up Micro Gas Turbine

  • Hyunduck Kwak;Lee, Yong-Bok;Kim, Chang-Ho;Gunhee Jang
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.243-249
    • /
    • 2000
  • In case of the limitation of Deep RIE fabrication for Micro Gas Turbine, bearing aspect ratio is limited in very small value. The characteristics such as pressure distribution load capacity and non-linearity of a short bearing of L/D=0.083 and a conventional bearing of L/D=1.0 with coupled boundary effects are investigated far Micro Gas Tlubine bearings. The coupled efffect was analyzed by mass conservation at coupled end area. The results, increasing load capacity and non-linearity due to the coupled effect of thrust and journal bearing, are obtained and the selection of journal bearing type is discussed.

  • PDF

Static and Dynamic Characteristics of Magnetically Preloaded Air Bearing Stage for a 3-Axis Micro-Machine Tool (3축 마이크로 공작기계용 자기예압 공기베어링 스테이지의 정, 동적 특성)

  • Ro Seung-Kook;Ehmann Kornel F.;Yoon Hyung-Suk;Park Jong-Kweon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.468-472
    • /
    • 2005
  • In this paper, the static and dynamic stiffness of the air bearing stage for micro-micro machine tool are examined experimentally. For stiffness and precision concerns, air bearing stages are adapted for 3-axis micro-milling machine which is size of $200x200\;mm^2$. The air bearings in the stage are preloaded by permanent magnets to achieve desired bearing clearance and stiffness for vertical direction. As the stiffness of the air bearing is primary interests, static stiffness test were performed on XY stage in Z direction and Z column in Y direction. Dynamic test were performed on XY stage and Z column, respectively. Both static and dynamic tests were performed in different air pressure conditions. The vertical stiffness of XY stage is about 9 N/ pm where Y stiffness of Z column is much smaller as $1\;N/{\mu}m$ because of the large moment generated by Y force on the column.

  • PDF

CFD Analysis of an Infinitely Long Slider Bearing with Two-Dimensional micro-Pockets (2차원 미세 포켓이 있는 무한장 Slider Bearing의 CFD 해석)

  • Park, Tae-Jo;Hwang, Yun-Geon;Sohn, Ja-Deok;Chung, Ho-Gyeong
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • It is reported by many researchers that the textured bearing surfaces, where many tiny micro-pockets or enclosed recesses were incorporated, can enhance the load support and reduce friction force. Recently, the basic lubrication mechanism of micro-pocketed parallel surfaces are explained in terms of "inlet suction" using continuity equation and simply cavitation condition. However, it is required that more actual cavitation condition in the pocket region should be applied to estimate exact bearing performance. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the exact lubrication characteristics of infinitely long slider bearing with micro-pockets. The results show that the pressure distributions are highly affected by pocket depths, its positions and numbers. The numerical method adopted in this paper and results can be use in optimal design of textured sliding bearings.

The Static and Dynamic Performance of a MEMS/MST Based Gas-Lubricated proceeding Bearing with the Slip Flow Effect

  • Kwak, H.-D.;Lee, Y.-B.;Kim, C.-H.;Lee, N.-S.;Choi, D.-H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.103-104
    • /
    • 2002
  • The influence of the slip flow on the MEMS/MST based gas-lubricated proceeding bearing is investigated. Based on the modified Reynolds equation, the numerical analysis of the finite difference method was developed by applying the first order slip flow approximation. The numerical prediction of bearing performance provides the significant results concerning the slip flow effect in micro scale gas-lubricated proceeding bearing. The result indicates that the load-carrying capacity as well as the rotordynamic coefficients were significantly reduced due to the slip flow. Through this work, it is concluded that the slip flow effect could not be ignored in the micro gas-lubricated proceeding bearing.

  • PDF

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine Generator (초소형 가스 터빈 제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 이용복;곽현덕;김창호;장건희
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.467-475
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce an excitation force due to narrow pressure distribution.

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine/Generator (초소형 가스 터빈/제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 곽현덕;이용복;김창호;장건희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.273-281
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load-carrying capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce all excitation force due to narrow pressure distribution.

  • PDF