• Title/Summary/Keyword: Micro Turbo Generator

Search Result 8, Processing Time 0.027 seconds

A Study on the Rotordynamic Characteristics of the Micro Turbo Generator (터보 방식으로 구동되는 마이크로 파워 시스템의 회전체 동역학적 특성에 관한 연구)

  • Ryu, Keun;Lee, Yong-Bok;Lee, Byoung-Su;Kim, Chang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.109-115
    • /
    • 2004
  • The micro turbo generator is new portable power source based on the Brayton cycle, which consists of a compressor, a turbine, a generator, and a combustion chamber. In this paper, the thermodynamic analysis was performed to find the required condition for hundreds watts power in the micro turbo generator, and also the rotordynamic stability was predicted using the numerical analysis of air foil bearings which support the micro turbo generator. By experimental works, the rotordynamic stability of the micro turbo generator with foil bearings was verified. While various transient dynamic situation, the micro turbo generator had stable performances. From the result, it was demonstrated that air foil bearings could be adapted to the micro turbo generator as a excellent lubrication element.

  • PDF

A Study on the Starter Control of the Turbo Generator (터보 제너레이터의 시동기 제어에 관한 연구)

  • 박승엽;노민식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.286-293
    • /
    • 2004
  • This paper presents the result of a study on the starter control for a turbo generator. Because a starter in gear box type turbo-generator system is composed of gearbox and brush DC motor, it should be replaced with High Speed Generator(HSG)) in HSG type Turbo-generator. There-ore, it is necessary to design a new starting algorithm and starter. In gearbox type system, brush DC motor is rotated to the designed speed using low voltage-high current battery power. After brush DC motor speed is increased to several times by gearbox, gas turbine engine can be rotated to designed starting speed. If we implement a starter with High Speed Generator(HSG), it is necessary to drive high-speed generator to high-speed motor. High-speed generator with permanent magnet on rotor has a low leakage inductance fur driving high-speed rotation, and it is necessary high DC link voltage for inverter when High-speed generator is driven to high speed. This paper presents result of development of the boost converter for converting high voltage DC from low battery voltage and design of the inverter for controlling a high frequency current to be injected to motor winding. Also, we show performance of the designed starter by driving the turbo generator.

The Development of the Turbo Generator System with Direct Driving High Speed Generator (고속 발전기 직접 구동 방식의 터보 제너레이터 시스템 개발)

  • 노민식;박승엽
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.87-94
    • /
    • 2003
  • This paper presents results of the development of the turbo generator system with structure which is HSG(High Speed Generator) installed directly to gas-turbine engine. Turbo generator with a high speed motor-generator directly has many advantages aspects of weight, size, lubrication system and complexity of the system compared of conventional turbo generator system with a gear box. But because of direct high speed operation of the high speed generator, we have to need stable high speed motor driving algorithm for perfect engine ignition when engine start. Also we have to need the design of the Power conditioning unit(PCU) for converting high speed AC output power to conventional AC power or needed DC power.

Spray Visualization of the Gas Turbine Vaporizer (가스터빈 기화기의 분무 가시화 연구)

  • Jo, Sungpil;Joo, Milee;Choi, Seongman;Rhee, Dongho
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.130-136
    • /
    • 2019
  • Spray visualization of a vaporizer fuel injection system of a micro turbo jet engine was experimentally studied. The fuel heating by combustion was simulated by the high pressure steam generator and combustor inlet air from the centrifugal compressor was simulated by compressed air stored in the high pressure air tank. Spray visualization was performed with single vaporizer, and then six vaporizers which are same number of micro turbojet engine were used. As a results, the spray characteristics of the vaporizer were understood with pressure difference of the combustor inlet air and the fuel supply pressure. Spray angles with three types of vaporizer configuration were measured. In the results, guide vane configuration has a wider spray angle than the straight tube and smooth curve tube with a swirler, so it is expected that the fuel will be effectively distributed inside the combustor flame tube.

Development of the Micro Gas Turbine Engine (마이크로 가스터빈 엔진 개발)

  • Kim, Seung-Woo;Kwon, Gii-Hun;Jang, Il-Hyeong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.361-366
    • /
    • 2001
  • A mim turbo-shaft engine of 50HP for UAV, which can be easily modified to turbo-prop and turbo-jet engine by sharing the core engine and has many applications to civilian demands and munitions, will be developed This kind of micro gas turbine engine has been developed mostly by the corporations which have special technology but are small in its scale. Especially, the gas turbine engine can be easily applied to other fields and developed by domestic technology, so that the sharing of technology is planed to realize through the cooperations with academies and research institutes. In this paper, the gas turbine engine, which has the compressor ratio of 3.8, the turbine inlet temperature of l180K and the engine speed higher than 100,000 rpm, is composed of centrifugal compressor, combustor, gas generator turbine, free power turbine and gear box. The competitiveness of the gas turbine engine can be obtained from minimizing its cost by the utilization of domestic infrastructure for the performance test and the decisive outsourcing.

  • PDF

Preliminary Study of Hybrid Micro Gas Turbine Engine (하이브리드 타입 초소형 가스터빈엔진 개발 및 초도 시운전)

  • Seo, Junhyuk;Choi, Juchan;Kwon, Kilsung;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • In this study, a 2W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and experimental investigations of its potential under actual combustion conditions were performed. A micro-gas turbine (MGT) contains a turbo-charger, combustor, and generator. Compressor and turbine blades, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control (CNC) machined static air bearing, and a permanent magnet was attached to the end of the shaft for generation. A heat transfer analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor's high temperature, which was verified in an actual experiment. The generator performance test showed that it can generate 2W at design rotational speed. Prototype micro-gas turbine generated maximum 1 mW electric power and lasted up to 15 minutes.

Numerical and Experimental Analysis of Micro Gas Turbine Heat Transfer Effect (초소형 가스터빈엔진 열전달 현상의 수치적 및 실험적 연구)

  • Seo, Junhyuk;Kwon, Kilsung;Choi, Ju Chan;Baek, Jehyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.153-159
    • /
    • 2015
  • In this study, a 2-W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and analytical and experimental investigations of its potential under actual combustion conditions were performed. An ultra-micro-gas turbine contains a turbo-charger, combustor, and generator. A compressor, turbine blade, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control machined air bearing, and a permanent magnet was attached to the end of the shaft for generation. An analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor heat, which was verified in an actual experiment.