• 제목/요약/키워드: Micro Turbine

검색결과 285건 처리시간 0.026초

디퓨져를 이용한 튜블러형 상반전 수차의 CFD 성능해석 (CFD Analysis of a Counter-rotating Tubular Type Micro-Turbine with Diffuser)

  • 이낙중;박지훈;황영호;김유택;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.205.2-205.2
    • /
    • 2011
  • Micro hydraulic turbines take a growing interest because of its small and simple structure as well as high possibility of applying to micro and small hydropower resources. The differential pressure exiting within the city water pipelines can be used efficiently to generate electricity like the energy generated through gravitational potential energy in dams. In order to reduce water pressure at the inlet of water cleaning centers, pressure reducing valves are used widely. Therefore, pressure energy is wasted. Instead of using the pressure reduction valve, a micro counter-rotating hydraulic turbine can be replaced to get energy caused by the large differential pressure found in the city water pipelines. In this study, in order to acquire design data of counter-rotating tubular type micro-turbine, output power, head, and efficiency characteristics due to the diffuser.

  • PDF

케프란 마이크로터빈의 모델링 해석에 관한 연구 (A Study on the Modeling Analysis for Kaplan Micro-turbines)

  • 김옥삼;김일수;김학형;심지연
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.105-110
    • /
    • 2006
  • Among many other alternative energy resources, small scale hydro power has been brought into attention as a reliable source of energy today, which had been relatively neglected since 1960s. Especially, Kaplan micro-turbine can be applied to various kind of small hydro power plants, such as reservoirs for agriculture purpose, sewage treatment plants and water purification plants. However present low head of Kaplan micro-turbines and small scale hydro turbines, have limitations in the minimum required head and flow rate for efficient operation. This research is to develop modeling analysis for the Kaplan micro-turbine, which can improve economical features of small hydro power plants. The contents and scope of this research are the efficiency improvement of Kaplan micro-turbine.

  • PDF

Analysis of the power augmentation mechanisms of diffuser shrouded micro turbine with computational fluid dynamics simulations

  • Jafari, Seyed A.;Kosasih, Buyung
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.199-217
    • /
    • 2014
  • Reported experimental and computational fluid dynamic (CFD) studies have demonstrated significant power augmentation of diffuser shrouded horizontal axis micro wind turbine compared to bare turbine. These studies also found the degree of augmentation is strongly dependent on the shape and geometry of the diffuser such as length and expansion angle. However study flow field over the rotor blades in shrouded turbine has not received much attention. In this paper, CFD simulations of an experimental diffuser shrouded micro wind turbine have been carried out with the aim to understand the mechanisms underpinning the power augmentation phenomenon. The simulations provide insight of the flow field over the blades of bare wind turbine and of shrouded one elucidating the augmentation mechanisms. From the analysis, sub-atmospheric back pressure leading to velocity augmentation at the inlet of diffuser and lowering the static pressure on blade suction sides have been identified as th dominant mechanisms driving the power augmentation. And effective augmentation was achieved for ${\lambda}$ above certain value. For the case turbine it is ${\lambda}$ greater than ${\approx}2$.

하이브리드 타입 초소형 가스터빈엔진 개발 및 초도 시운전 (Preliminary Study of Hybrid Micro Gas Turbine Engine)

  • 서준혁;최주찬;권길성;백제현
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.24-30
    • /
    • 2016
  • In this study, a 2W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and experimental investigations of its potential under actual combustion conditions were performed. A micro-gas turbine (MGT) contains a turbo-charger, combustor, and generator. Compressor and turbine blades, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control (CNC) machined static air bearing, and a permanent magnet was attached to the end of the shaft for generation. A heat transfer analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor's high temperature, which was verified in an actual experiment. The generator performance test showed that it can generate 2W at design rotational speed. Prototype micro-gas turbine generated maximum 1 mW electric power and lasted up to 15 minutes.

마이크로 가스터빈 설계 및 운전 성능 분석 : 제1부 - 성능해석 프로그램 (Analysis of Design and Operation Performance of Micro Gas Turbine : Part 1 - Performance Analysis Program)

  • 김정호;강도원;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제18권4호
    • /
    • pp.22-29
    • /
    • 2015
  • In this study, an in-house program to predict steady state operation of micro gas turbines is constructed using MATLAB. The program consists of two parts: design and off-design simulations. The program is fully modular in its structure, and performance of each component (compressor, combustor, turbine, recuperative heat exchanger and pipe elements) is calculated in a separate calculation module using mass and energy balances as well as models for off-design characteristics. The off-design modules of compressor and turbine use performance maps, which are program inputs. The off-design operation of a micro gas turbine under development was predicted by the program. The prediction results were compared with those by commercial software, and the validity of the in-house program was confirmed.

미소 비커스경도에 의한 Cr-Mo-V강의 경년열화 평가 (Evaluation on Degradation of Cr-Mo-V Steel by Micro-Vickers Hardness Measurement)

  • 김정기;남승훈;김엄기
    • 열처리공학회지
    • /
    • 제11권1호
    • /
    • pp.54-61
    • /
    • 1998
  • Since Cr-Mo-V steel has excellent fracture and creep properties at elevated temperature, they are extensively used as steam turbine components such as the turbine rotor. However, the turbine rotor steel used to suffer material degradation during long term service. Therefore, the assessment of the safety and residual life of the turbine rotor is periodically required during service. One of the most convenient techniques for that is the hardness method mainly due to its simplicity and nondestructive characteristics. In this research, six specimens with different aging times of turbine rotor steel were artificially prepared by an isothermal heat treatment at $630^{\circ}C$. The micro Vickers hardnesses of specimens were measured at room temperature. The relationships between the fracture properties and the hardness ratio were investigated. And also an indirect method to evaluate the residual life of degraded turbine rotor was proposed based on the micro Vickers hardness measurement.

  • PDF

삼투압발전용 마이크로 펠턴터빈의 성능해석 (Performance Analysis of a Micro-Hydro Pelton Turbine for the Osmotic Power Generation)

  • 오형우
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.18-22
    • /
    • 2011
  • This paper presents the transient performance analysis of a micro-hydro Pelton turbine for the osmotic power generation using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow field in the micro Pelton turbine with a single-jet is investigated by the CFD code adopted in the present study. Predicted characteristic curves agree fairly well with measured data for a prototype Pelton turbine over the normal operating conditions. The computational analysis method presented herein can be effectively applied to the hydraulic design optimization process of general purpose Pelton turbine runners.

러너베인 깃수의 변화에 따른 튜블러형 상반전 수차의 성능해석 (The Performance Analysis of a Counter-rotating Tubular Type Turbine with the Number of Runner Vane)

  • 박지훈;이낙중;황영호;김유택;이영호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.192.1-192.1
    • /
    • 2010
  • Micro hydraulic turbines take a growing interest because of its small and simple structure as well as high possibility of applying to micro and small hydropower resources. The differential pressure exiting within the city water pipelines can be used efficiently to generate electricity like the energy generated through gravitational potential energy in dams. In order to reduce water pressure at the inlet of water cleaning centers, pressure reducing valves are used widely. Therefore, pressure energy is wasted. Instead of using the pressure reduction valve, a micro counter-rotating hydraulic turbine can be replaced to get energy caused by the large differential pressure found in the city water pipelines. In this paper, detail studies have been carried out to acquire basic design data of micro counter-rotating hydraulic turbine, output power, head, and efficiency characteristics on various number of runner vane. Moreover, the influences of pressure, tangential and axial velocity distributions on turbine performance are also investigated.

  • PDF

Feasibility of using biogas in a micro turbine for supplying heating, cooling and electricity for a small rural building

  • Rajaei, Gh.;Atabi, F.;Ehyaei, M.A.
    • Advances in Energy Research
    • /
    • 제5권2호
    • /
    • pp.129-145
    • /
    • 2017
  • In this study, the use of a micro gas turbine system using biogas to supply heating, cooling and electricity loads of a rural building located in rural area around Tehran has been studied. Initially, the amount of energy needed by the farmhouse was calculated and then the number of needed microturbines was determined. Accordingly, the amount of substances entering biogas digester as well as tank volume were determined. The results of this study showed that village house loads including electrical, heating and cooling and hot water loads can be supplied by using a microturbine with a nominal power of 30 kW and $33.5m^3/day$ of biogas. Digester tank and reservoir tank volumes are $67m^3$ and $31.2m^3$, respectively. The cost of electricity produced by this system is 0.446 US$/kWh. For rural area in Iran, this system is not compatible with micro gas turbine and IC engine system use urban natural gas due to low price of natural gas in Iran, but it can be compatible by wind turbine, photovoltaic and hybrid system (wind turbine& photovoltaic) systems.

200kW급 마이크로 가스터빈 시스템의 설계 변수 민감도 해석 (Design Parameter Sensitivity Analysis of a 200kW Class Micro Gas Turbine System)

  • 신현동;강도원;김동섭;최문경;박필제
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.39-45
    • /
    • 2012
  • This paper describes the outcome of the design of a 200 kW class micro gas turbine and the sensitivity of its performance (efficiency and power) to the variations in major design parameters. The reference design parameters were set up based on the best available component technologies. The resulting net electricity generation efficiency of the micro gas turbine package was found to be competitive to those of other systems in the market. The sensitivities of power and efficiency to the variations in compressor and turbine efficiencies, pressure ratio, turbine inlet temperature, recuperator effectiveness, secondary air ratio, pressure loss ratios of both the cold and hot sides of the recuperator were estimated. Based on the sensitivity data, a simplified method to predict the variation in system performance responding to the combinations of small changes in all design parameters were set up and validated.