• Title/Summary/Keyword: Micro Spur Gear

Search Result 9, Processing Time 0.019 seconds

Study on the Transmission Error Prediction for a Spur Gear Pair (스퍼기어의 전달오차에 관한 연구)

  • Zhang, Qi;Zhang, Jing;Zhu, Zhong Gang;Wang, Zhen Rong;Xu, Zhe-zhu;Lyu, Sung Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.109-114
    • /
    • 2016
  • Nowadays, lower gear vibration and noise are necessary for drivers in automotive gearbox, which means that transmission gearbox should be optimized to avoid noise annoyance and fatigue before quantity production. Transmission error (T.E.) is the excitation factor that affects the noise level known as gear whine, and is also the dominant source of noise in the gear transmission system. In this paper, the research background, the definition of T.E. and gear micro-modification were firstly presented, and then different transmission errors of loaded torques for the spur gear pair were studied and compared by a commercial software. It was determined that the optimum gear micro-modification could be applied to optimize the transmission error of the loaded gear pair. In the future, a transmission test rig which is introduced in this paper is about to be used to study the T.E. after gear micro-geometry modification. And finally, the optimized modification can be verified by B&K testing equipment in the semi-anechoic room later.

Fabrication of a Micro Die by LIGA Process and Hybrid Powder Extrusion Process of Micro-spur Gear (LIGA 공정을 이용한 초소형 스퍼기어 금형 제작 및 하이브리드 분말 압출성형)

  • Lee, K.H.;Hwang, D.W.;Kim, J.H.;Jang, S.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.352-356
    • /
    • 2010
  • This paper was designed to fabricate the micro-spur gear by the LIGA and hybrid powder extrusion process. It is important to manufacture a micro-die with a high aspect ratio and determine appropriate extrusion conditions for a microforming. Ni has been used to fabricate micro-dies. LIGA process was capable to produce micro-extrusion dies with close tolerance, longer bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro-formability with average strain rate raging from $10^{-3}$ to $10^{-2} s^{-1}$ and constant temperature ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape ($\Phi3\times$h10mm) under compressive force of 10kN and, subsequently, the compacted powders were extruded by the hybrid powder extrusion process controlling of the temperature holing time for a improvement on formability of Al-22Zn powder. Micro-extrusion has succeeded in forming micro-gear shafts.

Fabrication of Micro Spur Gear in Nano Grained Al Alloy

  • Lee, Won-Sik;Jang, Jin-Man;Ko, Se-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.778-779
    • /
    • 2006
  • Manufacturing technologies of micro parts were studied in nano grained Al-1.5mass%Mg alloy. During compressive test at $300^{\circ}C$, the Al alloy showed stain softening phenomenon by grain boundary sliding regardless of strain rate. Micro spur gear with ten teeth (height of $200{\mu}m$ and pitch of $250{\mu}m$) was fabricated with sound shape by micro forging. During micro forging, increase of applied stress induced by friction between material and die surface was effectively compensated by decrease of stress by strain softening behavior and as a result, flow stress increased only about 50 MPa more than that in compressive test

  • PDF

Manufacturing technology of micro parts by powder injection molding (PIM기술을 이용한 마이크로 부품 성형기술)

  • Lee, W.S.;Ko, S.H.;Jang, J.M.;Kim, I.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.60-63
    • /
    • 2009
  • Manufacturing technologies of micro spur gear and micro mold by micro PIM were studied with stainless steel feedstock. For molding of gears, micro mold with gear cavity of 1.2 mm in diameter was produced by wire EDM. The proper injection pressure was selected to 70bar by observation and measuring of shapes and shrinkage of gears before/after sintering. For fabrication of micro mold, a tiny polymer gear was produced by injection into the mold. Then, 316L feedstock was again injected/compressed on the polymer gear and debinded together with polymer gear followed by sintering. As a result, another metal mold with gear cavity reduced to about 20% was fabricated and through repetition of this process chain, micro gear mold with cavity about below 800 um was finally obtained. In reduction of size by injection/compression molding, height of gear tooth was shrunk more and the effort for decrease of roughness of micro cavity were carried out ultrasonic polishing and as a result, the roughness in cavity decreased from 3-4 um to about 200 nm.

  • PDF

ACOUSTIC EMISSION IN BENDING FATIGUE PROCESS OF CARBURIZING SPUR DEAR BY AE SOUTCE LICATION

  • Sentoku, Hirofumi;Yamato, Hiroyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.142-145
    • /
    • 1995
  • It is important from prevention of the malfunction and an important accident by the failuer, to detect a failuer in revolution devices. The acoustic emission(AE) method is expected as means that defects an abnormal phenomenon of revolution devices earlily and utilized. Although a research example by the AE method is reported regarding a gears, little reserch has been conducted using the AE method for running gears in a bending fatigue process of spur gear teeth. Therefore, in this report, with two micro AE sensors attached to the side of the gear, AE was measured in a bending fatigue process of a carburizing gear by using the power circurating-type machine and AE source location in gear teeth were required. By various analysis in these data, the AE characteristics in the fatigue damaging process of the gear tooth were determined.

  • PDF

Powder extrusion with superplastic Al-78Zn powders for micro spur gears (초소형 스퍼기어 제조를 위한 초소성 Al-78Zn 분말 압출)

  • Lee, K.H.;Kim, J.W.;Hwang, D.W.;Kim, J.H.;Chang, S.S.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.387-390
    • /
    • 2009
  • This study was designed to fabricate the micro-electro-mechanical systems (MEMS) parts such as micro spur gears using hot extrusion of gas atomized Al-78Zn powders. For this purpose, it is important to develop new methods to fabricate micro-dies and choose suitable extrusion conditions for a micro-forming. Micro-dies with Ni were fabricated by LIGA technology. LIGA technology was capable to produce micro-extrusion dies with close tolerances, thick bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro formability with average strain rates ranging from $10^{-3}$ to $10^{-2}\;s^{-1}$ and constant temperatures ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape (${\Phi}3{\times}h10$) under compressive force of 10kN and, subsequently, the compacted powders were extruded at 563k in a hot furnace. Micro-extrusion has succeeded in forming micro-gear shafts.

  • PDF

Development of Mechanism for Micro Surface Robot with Rotating Sonar-Beam (회전 소나빔을 갖는 초소형 수상로봇의 메커니즘 개발)

  • Kang, Hyung-Joo;Man, Dong-Woo;Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.437-442
    • /
    • 2014
  • Recently, the needs for the development and application of the micro marine robot (MMR) which has the advantages in terms of size and cost are increasing. However, the basis is very short in the domestic. While the obstacle avoidance sonar (OAS) which was optimized in terms of size and performance and has the ability of 4-directional detection was developed for the obstacle avoidance of the micro surface robot (MSR) fortunately, the problem that the detection performance is degraded according to the shape of the obstacle because of using the fixed sonar-beam with the limited beam width and detection range exists. To solve this problem, the MSR mechanism that implements the rotating sonar-beam using the spur gear and the servo motor is proposed in this paper. To verify the performance of the proposed mechanism, the wall-tracking of the MSR is considered and the comparison and analysis in term of detection performance and actuation command is performed with conventional fixed sonar-beam. The test results show the validity of the proposed mechanism.

A Study on the Design of a Gear Transmission Error Test Rig (기어 전달오차 측정 장비의 설계에 관한 연구)

  • Zhang, Qi;Zhang, Jing;Yan, Hou-Ling;Zhu, Qing-Wang;Xu, Zhe-zhu;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.14-19
    • /
    • 2016
  • Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. TE is usually expressed as an angular deviation, or a linear deviation measured at the pitch point and calculated at successive positions of the pinion as it goes through the meshing cycle. Accurate measurement of TE for gear transmission will provide a reasonable basis for gear design, manufacturing processes and quality control. Therefore, in order to study the accuracy of the gear transmission, stability, TE, vibration and noise after gear micro-geometry modification, a gear transmission test rig is proposed in this paper, which is based on the existing technical conditions, by using reasonable testing methods, hardware and a signal processing method. All of the details and the experience can be taken into consideration in the next upgraded test rig.

A Study for Influences of Supplied Lubricant Quantities on Pitting Life of Spur Gears (윤활유 공급량에 따른 스퍼 기어의 피팅 수명에 관한 연구)

  • Joo, Jin-Wook;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.40-44
    • /
    • 2011
  • The object of this study is to investigate influences of supplied lubricant quantities on spur gear's pitting life. Pitting is a sort of contact fatigue failures and made by a repetitive load. Basically, pitting is difficult to predict its life by an analysis due to many factors to be considered about tribology problems. In this paper, pitting life was proved by experiment using two roller machine. For a contact fatigue test, operating circumstances should be considered. During the test, temperature and lubricant quantities are considered and to investigate an influence of lubricant quantities, a comparison between optimally enough and not enough lubricant quantity was implemented.