• 제목/요약/키워드: Micro Smart Grid Distribution Line

검색결과 4건 처리시간 0.017초

소형화된 배전선로의 실험적 제작을 위한 기초 연구 (A Study on Basic Technology for the Experimental Making of Miniaturized Electrical Power Distribution Line)

  • 오세필;최성철;김영민;강하나;고윤석
    • 한국전자통신학회논문지
    • /
    • 제12권6호
    • /
    • pp.1107-1114
    • /
    • 2017
  • 본 논문에서는 소형화된 배전선로의 실험적 제작에 대한 연구를 수행하였다. 배전계통을 분석하여 스마트 그리드 배전계통을 모델링하였으며, 소형화된 마이크로 3상 배전계통 리클로저를 설계하였다. 마이크로 리클로저는 센서부, 주제어부 그리고 릴레이부로 설계하였으며, 주제어부는 DSP를 기반으로 입력전류로부터 고장여부를 판별하여 고장전류를 차단하도록 설계하였다. 끝으로 설계 결과를 기반으로 마이크로 3상 배전계통과 마이크로 3상 리클로저를 실험적으로 제작함으로서 기초 제작 기술을 확보하였다.

Voltage Measurement Accuracy Assessment System for Distribution Equipment of Smart Distribution Network

  • Cho, Jintae;Kwon, Seong-chul;Kim, Jae-Han;Won, Jong-Nam;Cho, Seong-Soo;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1328-1334
    • /
    • 2015
  • A new system for evaluating the voltage management errors of distribution equipment is presented in this paper. The main concept of the new system is to use real distribution live-line voltage to evaluate and correct the voltage measurement data from distribution equipment. This new approach is suitable for a new Distribution Management System (DMS) which has been developed for a distribution power system due to the connection of distributed generation growth. The data from distribution equipment that is installed at distribution lines must be accurate for the performance of the DMS. The proposed system is expected to provide a solution for voltage measurement accuracy assessment for the reliable and efficient operation of the DMS. An experimental study on actual distribution equipment verifies that this voltage measurement accuracy assessment system can assess and calibrate the voltage measurement data from distribution equipment installed at the distribution line.

루프화 배전계통에 초전도 한류기 적용에 따른 Recloser-Fuse 보호협조 분석 (Analysis on Recloser-Fuse Coordination in Loop Power Distribution System with Superconducting Fault Current Limiters)

  • 최규완;김수환;문종필
    • 전기학회논문지P
    • /
    • 제64권3호
    • /
    • pp.111-115
    • /
    • 2015
  • Recently, protection coordination issues can occur due to increased fault current in power system when power system being changed radial power system to grid system such as loop power system, micro grid and smart grid. This paper analyzed Recloser-Fuse coordination in loop power distribution system with Superconducting Fault Current Limiters(SFCLs) when single line ground fault occur in loop power distribution system with SFCLs. We analyzed Recloser-Fuse Coordination in radial power distribution system and changed coordination caused by increased Fault current because of loop system when single line ground fault occur in power distribution system. This paper simulated to improve changed coordination using SFCLs in loop power distribution system. Power distribution system, SFCLs and protective devices are modeled using PSCAD/EMTDC.

Study on the Voltage Stabilization Technology Using Photovoltaic Generation Simulator in Three-Level Bipolar Type DC Microgrid

  • Kim, Taehoon;Kim, Juyong;Cho, Jintae;Jung, Jae-Seung
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1123-1130
    • /
    • 2018
  • Voltage stabilization is an essential component of power quality in low voltage DC (LVDC) microgrid. The microgrid demands the interconnection of a number of small distributed power resources, including variable renewable generators. Therefore, the voltage can be maintained in a stable manner through the control of these distributed generators. In this study, we did research on the new advanced operating method for a photovoltaic (PV) simulator in order to achieve interconnection to a bipolar LVDC microgrid. The validity of this voltage stabilization method, using the distributed generators, is experimentally verified. The test LVDC microgrid is configured by connecting the developed PV simulator and DC load, DC line, and AC/DC rectifier for connecting the main AC grid. The new advanced control method is applied to the developed PV simulator for the bipolar LVDC grid in order to stabilize the gird voltage. Using simulation results, the stabilization of the grid voltage by PV simulator using the proposed control method is confirmed the through the simulation results in various operation scenarios.