• Title/Summary/Keyword: Micro Rotor

검색결과 80건 처리시간 0.029초

Analysis of the power augmentation mechanisms of diffuser shrouded micro turbine with computational fluid dynamics simulations

  • Jafari, Seyed A.;Kosasih, Buyung
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.199-217
    • /
    • 2014
  • Reported experimental and computational fluid dynamic (CFD) studies have demonstrated significant power augmentation of diffuser shrouded horizontal axis micro wind turbine compared to bare turbine. These studies also found the degree of augmentation is strongly dependent on the shape and geometry of the diffuser such as length and expansion angle. However study flow field over the rotor blades in shrouded turbine has not received much attention. In this paper, CFD simulations of an experimental diffuser shrouded micro wind turbine have been carried out with the aim to understand the mechanisms underpinning the power augmentation phenomenon. The simulations provide insight of the flow field over the blades of bare wind turbine and of shrouded one elucidating the augmentation mechanisms. From the analysis, sub-atmospheric back pressure leading to velocity augmentation at the inlet of diffuser and lowering the static pressure on blade suction sides have been identified as th dominant mechanisms driving the power augmentation. And effective augmentation was achieved for ${\lambda}$ above certain value. For the case turbine it is ${\lambda}$ greater than ${\approx}2$.

미세부품가공을 위한 소형 초고속에어스펀들 개발 (Development of Miniaturized High-Speed Air Spindle for Micro-Meso Components)

  • 이승준;신인동;최수창;김용우;이종렬;이득우
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.334-339
    • /
    • 2010
  • The development of high-speed spindle have been studied extensively for micro machining in advanced industrial countries. The research of miniaturized high-speed air spindle is important part which needs for the micro machining process of high quality. So, This study was to carry out results about design characteristics of miniaturized high-speed air spindle. We had designed 4type turbines and shaft. They were simulated in use the computer simulation programs. We made them as products. They measured RPM (revolutions per minute). As a result of experiments, there was a contrast among 4type Turbines. it reached 384,000rpm in 4.5bar of air pressure. And, We tried to compare the results of measurement whit the results of computer simulation.

과학기술위성 반작용휠의 미소진동 측정 및 분석 (STSAT RWA Micro-Vibration Test and Analysis)

  • 오시환;남명용;박연묵;임조령;금정훈;이승우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.695-698
    • /
    • 2004
  • STSAT RWA (Reaction Wheel Assembly) micro-vibration is measured using KISTLER dynamic plate that can provide the time signals of three orthogonal forces and torques simultaneously up to 400Hz. In the post-processing, measured data are evaluated with respect to the wheel spin rate in both time and frequency domains, and the static/dynamic unbalances are evaluated from the extracted first harmonic component. Also the friction torque profile at each wheel speed is estimated from the measured data. Several higher order harmonic components are observed, that comes from its rotor shape as well as the wheel bearing characteristics. One of the most peculiar characteristics of this wheel is that the dynamic properties of two radial unbalance components are much different from each other as the RWA mounting configuration on a spacecraft is different from conventional RWA mounting configuration. Rocking mode is not appeared below 400Hz for all operating speed because the wheel size is very small. The post-processed results will be used for jitter analysis of STSAT due to RWA micro-vibration.

  • PDF

부분분사 축류형 마이크로터빈에서의 성능예측 및 성능특성에 관한 연구 (Performance Characteristics and Prediction on a Partially Admitted Single-Stage Axial-Type Micro Turbine)

  • 조종현;조수용;최상규
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.324-330
    • /
    • 2005
  • For axial-type turbines which operate at partial admission, a performance prediction model is developed. In this study, losses generated within the turbine are classified to windage loss, expansion loss and mixing loss. The developed loss model is compared with experimental results. Particularly, if a turbine operates at a very low partial admission rate, a circular-type nozzle is more efficient than a rectangular-type nozzle. For this case, a performance prediction model is developed and an experiment is conducted with the circular-type nozzle. The predicted result is compared with the measured performance, and the developed model quite well agrees with the experimental results. So the developed model could be applied to predict the performance of axial-type turbines which operate at various partial admission rates or with different nozzle shape.

  • PDF

펜타곤 결선방식의 5상 하이브리드 스텝모터의 미세스텝 구동회로 개발 (Development of Micro-Stepping Drive Circuit for 5-Phase Step Motor having Pentagon Type Winding)

  • 임상덕;최중경;박승엽;안호균;김세일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.568-570
    • /
    • 1997
  • In this paper, we develope the micro-stepping driver circuit for 5-phase step motor having pentagon type winding and improve the position control performance of the rotor, $0.45^{\circ}$, $0.028125^{\circ}$, $0.0140625^{\circ}$ per step.

  • PDF

부분분사 축류형 마이크로터빈에서의 성능예측 및 성능특성에 관한 연구 (Performance Characteristics and Prediction on a Partially Admitted Single-Stage Axial-Type Micro Turbine)

  • 조종현;최상규;조수용
    • 한국유체기계학회 논문집
    • /
    • 제9권4호
    • /
    • pp.13-19
    • /
    • 2006
  • For axial-type turbines which operate at partial admission, a performance prediction model is developed. In this study, losses generated within the turbine are classified to windage loss, expansion loss and mixing loss. The developed loss model is compared with experimental results. Particularly, if a turbine operates at a very low partial admission rate, a circular-type nozzle is more efficient than a rectangular-type nozzle. For this case, a performance prediction model is developed and an experiment is conducted with the circular-type nozzle. The predicted result is compared with the measured performance, and the developed model quite well agrees with the experimental results. So the developed model could be applied to predict the performance of axial-type turbines which operate at various partial admission rates or with different nozzle shape.

2Hall-ICs를 이용한 저가형 PM Brushless DC Motor 속도 제어 (Low Cost Speed Control System of PM Brushless DC Motor Using 2 Hall-ICs)

  • 윤용호;우무선;김덕규;원충연;최유영
    • 전력전자학회논문지
    • /
    • 제9권4호
    • /
    • pp.311-318
    • /
    • 2004
  • 최근 각종 산업기기 및 자동화기기에는 회전자가 영구자석으로 구성된 브러시리스 전동기의 사용이 증가하고 있다. 그러나 회전자가 영구자석으로 이루어진 BLDC 전동기의 경우 회전자 위치 판별 센서는 필수 요소이다. 그러나 센서(엔코더, 레졸버등)를 사용할 경우 크기 증가, 비용 상승 등의 원인으로 작용한다. 따라서 본 논문에서는 PM BLDC 전동기의 속도제어를 수행함에 있어 기존의 엔코더와 Hall-IC 3개를 이용하지 않고, 두개를 이용하여 회전자의 위치를 판별함과 동시에 속도 센서를 대신하여 사용할 수 있는 방법을 제안하였다. 그 결과 성능은 동일하고, 구동회로의 크기와 제조 단가를 낮출 수 있는 효과를 얻었다.

저가형 LIDAR를 장착한 소형 무인항공기의 3차원 실내 항법 및 자동비행 (3-D Indoor Navigation and Autonomous Flight of a Micro Aerial Vehicle using a Low-cost LIDAR)

  • 허성식;조성욱;심현철
    • 로봇학회논문지
    • /
    • 제9권3호
    • /
    • pp.154-159
    • /
    • 2014
  • The Global Positioning System (GPS) is widely used to aid the navigation of aerial vehicles. However, the GPS cannot be used indoors, so alternative navigation methods are needed to be developed for micro aerial vehicles (MAVs) flying in GPS-denied environments. In this paper, a real-time three-dimensional (3-D) indoor navigation system and closed-loop control of a quad-rotor aerial vehicle equipped with an inertial measurement unit (IMU) and a low-cost light detection and ranging (LIDAR) is presented. In order to estimate the pose of the vehicle equipped with the two-dimensional LIDAR, an octree-based grid map and Monte-Carlo Localization (MCL) are adopted. The navigation results using the MCL are then evaluated by making a comparison with a motion capture system. Finally, the results are used for closed-loop control in order to validate its positioning accuracy during procedures for stable hovering and waypoint-following.

손실을 고려한 500W급 마이크로 가스터빈 발전기용 전동발전기의 요구동력 및 요구효율 선정 (Prediction of Power and Efficiency Requirement of Motor/generator for 500W Class Micro Gas Turbine Generator Considering Losses)

  • 박철훈;최상규;함상용
    • 한국유체기계학회 논문집
    • /
    • 제14권5호
    • /
    • pp.24-30
    • /
    • 2011
  • 500W class MTG(Micro turbine generator) operating at 400,000 rpm is under development. From the cycle analysis, it is decided that the self-sustaining speed of MTG is 200,000rpm and the generating speed is 400,000 rpm. Therefore, motor should be designed so that it is able to rotate the rotor up to 200,000rpm and generator should designed so that it is able to generate 500W output at 400,000rpm. First step to design motor/generator is to determine the power and efficiency requirement. Not only the power into the compressor and from the turbine at the operating speed but also the mechanical and electrical losses should be considered in determining the power and efficiency requirement. This study presents the procedure and the results of determining the power and efficiency requirement considering the mechanical and electrical losses depending on the rotating speed which is measured from the experiment.

고해상도 FMCW 레이더 영상 합성과 CW 신호 분석 실험을 통한 드론의 탐지 및 식별 연구 (Experimental Study of Drone Detection and Classification through FMCW ISAR and CW Micro-Doppler Analysis)

  • 송경민;문민정;이우경
    • 한국군사과학기술학회지
    • /
    • 제21권2호
    • /
    • pp.147-157
    • /
    • 2018
  • There are increasing demands to provide early warning against intruding drones and cope with potential threats. Commercial anti-drone systems are mostly based on simple target detection by radar reflections. In real scenario, however, it becomes essential to obtain drone radar signatures so that hostile targets are recognized in advance. We present experimental test results that micro-Doppler radar signature delivers partial information on multi-rotor platforms and exhibits limited performance in drone recognition and classification. Afterward, we attempt to generate high resolution profile of flying drone targets. To this purpose, wide bands radar signals are employed to carry out inverse synthetic aperture radar(ISAR) imaging against moving drones. Following theoretical analysis, experimental field tests are carried out to acquire real target signals. Our preliminary tests demonstrate that high resolution ISAR imaging provides effective measures to detect and classify multiple drone targets in air.