• Title/Summary/Keyword: Micro Patterning

Search Result 252, Processing Time 0.031 seconds

Laser Beam Application and Technology in Micro Machining (레이저 빔 응용 기술)

  • 윤경구;이성국;김재구;신보성;최두선;황경현;박진용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.27-35
    • /
    • 2000
  • 재료가공분야에의 레이저의 적용은 1960년대 후반부터 시작되었으며, 고출력 CO$_2$ 와 Nd:YAG 레이저가 많은 산업분야에서 보편화될 정도로 발전하여 왔다. 재료가공에서의 레이저의 적용분야는 금속의 절단, 용접 및 드릴링, 세라익의 스크라이빙, 플라스틱과 복합재의 절단 및 여러 가지 재료의 마킹 등을 포함한다. 이와 같은 모든 응용에서 공통적인 것이 레이저 조사에 의해 재료를 용융, 증발시키는 열적 메카니즘이다.(중략)

  • PDF

Effect of buffer layer on the microstructure and magnetic properties of NdFeB thin films (NdFeB 박막의 자기적 특성 및 미세구조에 미치는 buffer layer의 영향)

  • ;;;G. A. Kapustin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.234-235
    • /
    • 2002
  • NdFeB 박막자석은 Sputtering, MBE, Laser ablation법에 의해 제조되고 있으며[1-3] milli-size motor[4], magnetic recording media[5], micro-patterning[3]등에 응용될 수 있다. 최근에는 MEMS(Micro-electro mechanical system)분야에서도 잠재적 응용가능성을 지니고 있는 것으로 알려져 있다. 최근에는 NdFeB 박막 제조 시 자성층의 산화방지 및 자기 특성을 향상을 위하여 buffer layer를 이용한 많은 연구가 이루어지고 있다.[6] (중략)

  • PDF

Design, Fabrication and Testing of Planar Type of Micro Solid Propellant Thruster (평판형 마이크로 고체 추진제 추력기의 설계, 제작 및 평가)

  • Lee, Jong-Kwang;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.77-84
    • /
    • 2006
  • With the development of micro/nano spacecraft, concepts of micro propulsion are introduced for orbit transfer and drag compensation as well as attitude control. Micro solid propellant thruster has been attention as one of possible solution for micro thruster. In this paper, micro solid propellant thruster is introduced and research on basic components of a micro solid propellant thruster is reported. Micro Pt igniter was fabricated through negative patterning and quantitative effect of geometry was estimated. The characteristic of HTPB/AP solid propellant was investigated to measure the homing velocity. A combustion chamber was fabricated by means of anisotropic etching of photosensitive glass. Finally, micro solid propellant thrusters having various geometries were fabricated and tested.

The Fabrication of Micro-electrodes to Analyze the Single-grainboundary of ZnO Varistors and the Analysis of Electrical Properties (ZnO 바리스터의 단입계면 분석을 위한 마이크로 전극 제작과 전기적 특성 해석)

  • So, Soon-Jin;Lim, Keun-Young;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.231-236
    • /
    • 2005
  • To investigate the electrical properties at the single grainboundary of ZnO varistors, micro-electrodes were fabricated on the surface which was polished and thermally etched. Our micro-electrode had 2000 $\AA$ silicon nitride layer between micro-electrode and ZnO surface. This layer was deposited by PECVD and etched by RIE after photoresistor pattering process using by mask 1. The metal patterning of micro-electrodes used lift-off method. We found that the breakdown voltage of single grainboundary is about 3.5∼4.2 V at 0.1 mA on I-V curves. Also, capacitance-voltage measurement at single grainboundary gave several parameters( $N_{d}$, $N_{t}$, $\Phi$$_{b}$, t) which were related with grainboundary.ary.

A Study on the Argon Laser Assisted Thermochemical Micro Etching (레이저를 이용한 미세에칭에 관한 연구)

  • 박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.844-847
    • /
    • 2001
  • The application of laser direct etching has been discussed, and believed that the process is a very powerful method for micro machining. This study is focused on the micro patterning technology using laser direct etching process with no chemical damage of the material surface. A new introduced concept of energy synergy effect for surface micro machining is the combination of chemically ion reaction and laser thermal process. The etchant can't etch the material in room temperature, and used Ar laser has not power enough to machine. But, the machining is occurred in local area of the material by the combined energy. Using this process, the material is especially prevented from chemical damage for electric property. We have tested this new concept, and achieved a line with $1{mu}m$ width. The Ar laser with 488nm wavelength was used. The material was Si(100) wafer, and etchant is KOH solution. The application and flexibility of this process is in great hopes for MEMS structures and fabrication of the micro electric device parts.

  • PDF