• 제목/요약/키워드: Micro PIV

Search Result 95, Processing Time 0.018 seconds

Red Blood Cell Velocity Field in Rat Mesenteric Arterioles Using Micro PIV Technique

  • Sugii, Y;Nishio, S;Okamoto, K;Nakano, A;Minamiyama, M;Niimi, H
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • As endothelial cells are subject to flow shear stress, it is important to determine the detailed velocity distribution in microvessels in the study of mechanical interactions between blood and endothelium. This paper describes a velocity field of the arteriole in the rat mesentery using an intravital microscope and high-speed digital video system obtained by a highly accurate PIV technique. Red blood cells (RBCs) velocity distributions with spatial resolutions of $0.8{\times}0.8{\mu}m$ were obtained even near the wall in the center plane of the arteriole. By making ensemble-averaged time-series of velocity distributions, velocity profiles over different cross-sections were calculated for comparison. The shear rate at the vascular wall also evaluated on the basis of the ensemble-averaged profiles. It was shown that the velocity profiles were blunt in the center region of the vessel cross-section while they were steep in the near wall region. The wall shear rates were significantly small, compared with those estimated from the Poiseuille profiles.

  • PDF

Simultaneous Measurement of Internal and External Flow Fields around the Droplet Formation in a Microchannel (마이크로 채널 내 Droplet 형성에 따른 내${\cdot}$외부 유동장 동시측정)

  • Kim Kyung Chun;Kim Jae Min;Yoon Sang Youl
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.80-83
    • /
    • 2004
  • This experiment has been carried out to measure the process of droplet formation between water phase fluid$(PVA\;3\%)$ and organic phase fluid(oil), Internal and External flow fields measured by a Dynamic Micro-PIV method Water-in-oil(W/O) droplets successfully generated at a cross junction and Y junction. Internal and external flow fields were measured when the droplet grew up, stretched and separated.

  • PDF

Visualization of the two-layered electroosmotic flow and its EHD instability in T-channels by micro PIV

  • Kang Kwan Hyoung;Shin Sang Min;Lee Sang Joon;Kang In Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.75-78
    • /
    • 2003
  • An interfacial instability has recently been observed for the DC- and AC-powered electroosmotic flows of the two miscible electrolyte layers having different concentrations in microchannels. It is rather contrary to our common belief that the flow inside a microchannel is generally stable due to the dominant role of the viscous damping. In this work, we visualized the electroosmotic flow inside a T-channel to validate the numerical predictions. It is clearly shown that the strong vortices (which characterize the interface shapes) are generated at the interface of the two fluids, as was predicted in the numerical analysis.

  • PDF

Measurements of Remote Micro Displacements of the Piping System and a Real Time Diagnosis on Their Working States Using a PIV and a Neural Network (PIV와 신경망을 이용한 배관시스템 원격 미세변위 측정과 실시간 작동상태 진단)

  • Jeon, Min Gyu;Cho, Gyeong Rae;Oh, Jung Soo;Lee, Chang Je;Doh, Deog Hee
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.3
    • /
    • pp.264-274
    • /
    • 2013
  • Piping systems play an important role in gas and oil transferring system. In the piping system, there are many elements, such as valves and flow meters. In order to check their normal operating conditions, each signal from each element is displayed on the monitor in the pipe control room. By the way, there are several accidental cases in the piping system even if all signals from the local elements are judged to be normal on the monitor in the control room. Further, opposite cases often happen even the monitor shows abnormal while the local elements work normal. To overcome this abnormal functions, it is not so easy to construct the environment in which sensors detecting the working states of all elements installed in the piping system. In this paper, a new non-contact measurement technique which can calculate the elements' delicate displacements by using a PIV(particle image velocimetry) and diagnose their working states by using a neural network is proposed. The measurement system consists of a host computer, a micro system, a telescope and a high-resolution camera. As a preliminary test, the constructed measurement system was applied to measure delicate vibrations of mobile phones. For practical application, a pneumatic system was measured by the constructed system.

A Study on the Development of Measurement Techniques for Thermal Flows in MEMS

  • Ko Han-Seo;Yang Sang-Sik;Yoo Jai-Suk;Kim Hyun-Jung
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.387-395
    • /
    • 2006
  • A review on advanced flow visualization techniques is presented particularly for applications to micro scale heat and mass transport measurements. Challenges, development and applications of micro scale visualization techniques are discussed for the study of heating/evaporating thin films, a heated micro channel, and a thermopneumatic micro pump. The developed methods are (1) Molecular Tagging Fluorescence Velocimetry (MTFV) using 10-nm caged seeding molecules (2) Micro Particle Velocimetry (MPIV) and (3) Ratiometric Laser Induced Fluorescence (LIF) for micro-resolution thermometry. These three methods are totally non-intrusive techniques and would be useful to investigate the temperature and flow characteristics in MEMS. Each of these techniques is discussed in three-fold: (1) its operating principle and operation, (2) its application and measurement results, and (3) its future challenges.

Development of Stereoscopic Micro-PTV Method (Stereoscopic micro-PTV기법의 개발)

  • Yu, Cheong-Hwan;Kim, Hyoung-Bum
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.109-113
    • /
    • 2007
  • Micro-PIV is a well-known method for measurement of two- dimensional, two-component velocity in the microfluidic devices. Lots of the micro fluidic devices generate three-dimensional flow and 3D measurement of velocity is helpful to understand the physics of micro flow phenomena. In this study, we developed new micro 3D measurement method by applying 2-frame PTV in stereoscopic micro system. In this study, we did the validation study of SMPTV by using the simulated flow model to verify the accuracy and the feasibility of measurement and compared with SMPIV method. The results showed that SMPTV provides better spatial resolution and measurement accuracy than SMPIV method.

  • PDF

Development of Wall Flow Sensor Using Micro Imaging Device (미세 영상 장치를 이용한 벽면 유동 센서 개발)

  • Lee, Seung Hwan;Kim, Byung Soo;Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1217-1222
    • /
    • 2012
  • A wall flow sensor has been used for feedback flow control and wall shear stress measurement. In this study, we developed a new wall flow sensor by combining the PIV algorithm and the micro image sensor used in an optical mouse. The feasibility of the wall flow sensor was investigated by using simulated fluid flow experiments. Compared with the quadrature signal from imaging devices, the accuracy of the wall flow velocity measurement was improved and the dynamic range increased. In addition, the depth information of particles was also measured by using the defocusing imaging technique.

Flow Visualization of Magnetic Particles under the external magnetic field in bubbly flow using Single Plane Illumination Microscopy - MicroPIV (Single Plane Illumination Microscopy - MicroPIV를 이용한 버블 유동에서 외부 자계 영향을 받는 자성입자 가시화)

  • Lee, Changje;Cho, Gyeong-rae;Lee, Sangyoup
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.36-42
    • /
    • 2021
  • This study measured the velocity of magnetic particles inside the power generation using external heat sources. Single Plane Illumination Microscopy (SPIM) was used to measure magnetic particles that are simultaneously affected by bubbly flow and magnetic field. It has the advantage of reducing errors due to particle superposition by illuminating the thin light sheet. The hydraulic diameter of the power generation is 3mm. Its surface is covered with a coil with a diameter of 0.3 mm. The average diameter of a magnetic particle is 200nm. The excitation and emission wavelengths are 530 and 650nm, respectively. In order to find out the flow characteristics, a total of four velocity fields were calculated in wide and narrow gap air bubbles, between the wall and the air bubble and just below the air bubble. Magnetic particles showed up to 8.59% velocity reduction in the wide gap between air bubbles due to external magnetic field.

Hemodynamical analysis by viscosity characteristics of artificial blood for μ-PIV experiment of Radio-cephalic arteriovenous fistula(RC-AVF) (μ-PIV기법을 이용한 동정맥루 모사혈관에서의 모사 혈액의 점도특성에 따른 혈류역학적 분석)

  • Song, Ryungeun;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Radio-cephalic arteriovenous fistula(RC-AVF) is the most recommended operation of achieving access for hemodialysis. However, it has high rates of early failure depending on the many haemodynamic conditions. To increase RC-AVF patency rate, many researches were performed by in-vitro experiment via artificial vessel and blood analogue fluid, and there were conflicting opinions about whether the non-Newtonian properties of blood have an influence on the flow in large arteries. To investigate the influence of viscoelasticity of blood within the RC-AVF, we fabricated three dimensional artificial RC-AVF and two kinds of blood analogue fluid. The velocity field of two fluids within the vessel were measured by micro-particle velocimetry(m-PIV) and compared with each other. The velocity profiles of both fluids for systolic phase were matched well while those for diastolic phase did not correspond. Therefore, it is desired to use non-newtonian fluid for in-vitro experiment of RC-AVF.

Flow Visualization of the Flow inside the Droplet Passing through a Straight and a Diverging Channel (직선채널과 확대채널에서의 액적 내부 유동 가시화)

  • Jin, Byung-Ju;Kim, Young-Won;Yoo, Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.71-76
    • /
    • 2007
  • Flow visualization of a droplet passing through a straight channel and a diverging channel has been carried out using micro-PIV. Diverging channel is frequently used in lab-on-a-chip and microfluidic devices, where flow pattern inside the droplet passing is quite different from that through a straight channel. In the present study, we visualized the droplet flow in three different regions. The first region is where the droplet has a wide contact area with the channel wall, the second region is characterized with a narrow contact area and the third region is where droplet is detached from the channel wall. Visualization results show that the internal flow inside the droplet passing through the straight channel moves in the opposite direction to the droplet velocity in the near wall exhibiting complex flow patterns. But in the diverging channel the internal flow inside the droplet moves in the same direction as the droplet velocity due to the shear induced by oil phase flow exhibiting rather simple flow pattern.

  • PDF