• Title/Summary/Keyword: Micro On-Off Valve

Search Result 16, Processing Time 0.031 seconds

The optimal design by Micro On-Off Valve analysis (Micro On-Off Valve 해석에 의한 최적 설계)

  • Kim D.S.;Park S.W.;Koh C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.285-290
    • /
    • 2005
  • Micro On-Off valves are currently recognized as the core technology in the fields of the micro fluid chip fur medical applications and production lines of semi-conduct chip. Micro valves that operate by compressed air need the high-speed responsibility, repeatability, the absorbability and the uniform pressure by the poppet. In this study, Micro On-Off valves that posses the high-speed responsibility and the high rate of flow have designed and analyzed through the law of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, Flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

An Investigation into Micro Valve Field and Flow Field Characteristic of 7mm Width (7mm폭의 Micro Valve 자장 및 유동특성 고찰)

  • Jeon, Y.S.;Kim, D.S.;Shin, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.657-658
    • /
    • 2006
  • Recently, the micro on-off valves have been focused on core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for bio-medical applications. A key characteristics for micro valve, operated by compressed air, are high speed response and great repeatability. Indeed, it is also important to keep the pressure on the cross-sectional area of the poppet to be constant regardless of the fluctuation of the pressure exerted on the ports. In this study, we have designed and analysed the high-speed and high flow rate micro on-off valve using the analogy of equivalent magnetic circuit and Finite Element Method(FEM) respectively. In case of poppet, flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

Analysis and Design of Micro Solenoid (마이크로 솔레노이드의 해석 및 설계)

  • Jeon, Y.S.;Bae, S.K.;Kim, D.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.4
    • /
    • pp.14-20
    • /
    • 2006
  • Recently, the on-off solenoid valves have been focused on core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for bio-medical applications. A key characteristics for on-off solenoid valve, operated by compressed air, are high speed response and great repeatability. Indeed, it is also important to keep the pressure on the cross-sectional area of the poppet to be constant regardless of the fluctuation of the pressure exerted on the ports. In this study, we have designed and analysed the high-speed and high flow rate on-off solenoid valve using the analogy of equivalent magnetic circuit and Finite Element Method (FEM) respectively. In case of poppet, flow field characteristics was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D simulation using distribution curve of the force by working the front poppet.

  • PDF

Development of a Hydraulic Level Control System for High-speed Rice Transplanting Machines (고속 이앙기의 유압 수평 제어 장치 개발에 관한 연구)

  • 정연근;정병학;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.79-88
    • /
    • 2002
  • This study was conducted to develop system for high speed rice transplanting machines. The control system includes a sensor detecting the tilt angle of the seedling bed, a micro-controller and a hydraulic system consisting of a double acting cylinder, a four-way three-position solenoid valve, a relief valve and a hydraulic pump. The levelling system shared the pump with the existing steering control, resulting in a tandem center circuit for the steering and levelling control systems. Using the input signal from the sensor, the micro-controller determined and generated the output signal to control the cylinder through the solenoid valve to keep the seedling bed always parallel to the water surface regardless of soil unevenness during the transplanting operations. Both an ON/OFF and a PWM control schemes were tested. When the flow rate was more than 1 ι/min in the ON/OFF control, the system showed unstable rolling. However, in the PWM control, the system worked stably although the flow rate was more than 1 ι/min. The PWM control showed a better performance when a large difference between the angle and the dead band of the control system occurred. The characteristics of tile system response to given tilt angles were predicted by a computer simulation. Both the ON/OFF and the PWM control systems worked well providing that the operating and waiting times were properly adjusted.

Characteristic Analysis and experiment of the Low Power Consumption type Micro Valve (초절전형 마이크로 밸브 특성해석 및 실험)

  • Kim, D.S.;Park, S.W.;Kim, H.S.;Yoo, J.S.;Lee, W.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.876-881
    • /
    • 2004
  • In this study, A special quality analysis and experiment for low power consumption type pneumatic on-off micro valve was performed. And flow characteristics of the micro valve by stroke change was numerically investigated. As a result, it is shown that magnetic force(2.4N) is exerted enough to move poppet with 0.3mm stroke with 0.01 seconds of response time, and that there is no magnetic force emitted by yoke. Under the condition of poppet stroke smaller than about 0.8mm, dynamic pressure acts to poppet wall up to supply pressure level. But, that is decreasing to 40% when poppet stroke is 0.8mm.

  • PDF

Analysis and Design of the Low Power Consumption type Micro Valve (초절전형 마이크로 밸브 해석 및 설계)

  • Kim D.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.2
    • /
    • pp.15-19
    • /
    • 2004
  • In this study, Design and simulation for low power consumption type pneumatic on-off micro valve was performed. And flow characteristics of the micro valve by stroke change was numerically investigated. As a result, it is shown that magnetic force(6.8N) is exerted enough to move poppet with 0.438mm stroke with 0.01 seconds of response time, and that there is no magnetic force emitted by yoke. Under the condition of poppet stroke smaller than about 0.4mm, dynamic pressure acts to poppet wall up to supply pressure level. But, that is decreasing to 40% when poppet stroke is 0.8mm.

  • PDF

Development of micro check valve with polymer MEMS process for medical cerebrospinal fluid (CSF) shunt system (Polymer MEMS 공정을 이용한 의료용 미세 부품 성형 기술 개발)

  • Chang, J.K.;Park, C.Y.;Chung, S.;Kim, J.K.;Park, H.J.;Na, K.H.;Cho, N.S.;Han, D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1051-1054
    • /
    • 2000
  • We developed the micro CSF (celebrospinal fluid) shunt valve with surface and bulk micromachining technology in polymer MEMS. This micro CSF shunt valve was formed with four micro check valves to have a membrane connected to the anchor with the four bridges. The up-down movement of the membrane made the CSF on & off and the valve characteristic such as open pressure was controlled by the thickness and shape of the bridge and the membrane. The membrane, anchor and bridge layer were made of the $O_2$ RIE (reactive ion etching) patterned Parylene thin film to be about 5~10 microns in thickness on the silicon wafer. The dimension of the rectangular nozzle is 0.2*0.2 $\textrm{mm}^2$ and the membrane 0.45 mm in diameter. The bridge width is designed variously from 0.04 mm to 0.12 mm to control the valve characteristics. To protect the membrane and bridge in the CSF flow, we developed the packaging system for the CSF micro shunt valve with the deep RIE of the silicon wafer. Using this package, we can control the gap size between the membrane and the nozzle, and protect the bridge not to be broken in the flow. The total dimension of the assembled system is 2.5*2.5 $\textrm{mm}^2$ in square, 0.8 mm in height. We could precisely control the burst pressure and low rate of the valve varing the design parameters, and develop the whole CSF shunt system using this polymer MEMS fabricated CSF shunt valve.

  • PDF

Analysis of ISO Solenoid Valve for Electrical Characteristic (ISO 솔레노이드 밸브 전기적 특성 분석)

  • Jeon, Yong-Sik;Oh, Yeong-Cheol;Ju, Min-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.663-664
    • /
    • 2008
  • In this study, A special quality analysis and experiment for low power consumption type pneumatic on-off micro valve was performed. And flow characteristics of the micro valve by stroke change was numerically investigated. As a result, it is shown that magnetic force(2.4N) is exerted enough to move poppet with 0.3mm stroke with 0.01 seconds of response time, and that there is no magnetic force emitted by yoke.

  • PDF

A Study of On-Off Solenoid Actuator (On-Off 솔레노이드 엑츄에이터의 특성 연구)

  • Jeon, Yong-Sik;Kim, Dong-Soo;Lim, Kee-Joe
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.154-155
    • /
    • 2007
  • Put Recently, development of micro valves that operate by compressed air has received significant attention in the fields of the micro fluid chip for medical applications or production lines of semi-conduct chip for electronic goods. Especially it is required that high-speed responsibility and lower power in optimal design of these micro valves. The primary objective of this study is to compare the optimally designed Solenoid Valve with the actually produced one which can highly improve the efficiency by providing optimal current according to mechanical load.

  • PDF

Experimental Study on the Movement of Pneumatic Actuating Mechanism for Self-Propelling Endoscope (자율주행 내시경을 위한 공압 구동장치의 이동특성에 관한 실험적 연구)

  • Lim, Young-Mo;Park, Ji-Sang;Kim, Byung-Kyu;Park, Jong-Oh;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.194-199
    • /
    • 2001
  • In this paper, we propose a new locomotive mechanism using impulsive force for microcapsule-type endoscope. It has the compact size for movement in the colon and actuating mechanisms for hi-directional movement. The actuating mechanism resembles a pneumatic cylinder and consists of body, inertia mass(piston). spring. pneumatic source and calve. When valve is ON, the pneumatic impulsive force between piston and body drives them in two opposite direction. As the air in the body is passed away, the contrary movements are occurred by spring reaction. Therefore, the direction of body's motion is determined by the relative magnitude of two opposite impulsive forces, i.e., pneumatic and spring force. The effect of two impulsive forces can simply be controlled by On-Off time of solenoid valve.

  • PDF