• 제목/요약/키워드: Micro Needle

검색결과 85건 처리시간 0.039초

장벽 방전형 공기 펌프의 이온풍 발생에 미치는 방전전극 형상의 영향 (Effect of Discharge Electrode Shape of a Barrier Discharge Type Gas Pump on Ionic Wind Generation)

  • 황덕현;문재덕
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.994-998
    • /
    • 2009
  • Existing cooling technologies no longer provide adequate heat dissipation due to excessive heat generation caused by the growing component density on electronic devices. An ionic gas pump can be used for the thermal management of micro-electronic devices, since the size of pump can be reduced to a micrometer scale. In addition, the gas pump allows for gas flow control and generation without moving parts. This ideal property of gas pump gives rise to a variety of applications. However, all these applications require maximizing the wind velocity of gas pump. In this study a barrier discharge type gas pump, with a needle-shaped corona electrode instead of a plate-shaped corona electrode, has been investigated by focusing on the corona electrode shape on the wind velocity and wind generation yield. As a result, the enhanced wind velocity and wind generation yield of 1.76 and 3.37 times were obtained with the needle-shaped corona electrode as compared with the plate-shaped corona electrode of the proposed barrier discharge type gas pump.

A study on the TiN coating applied to a rolling wire probe

  • Song, Young-Sik;S. K. Yang;Kim, J.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 추계학술발표회초록집
    • /
    • pp.118-118
    • /
    • 2003
  • In a rolling wire probe, a key component of an inspection apparatus for PDP electrode patterns, the electric performance of it is known to be strongly dependent on the surface condition of a collet pin, a needle pin, and a wire. However, the collet and needle pins rotate very rapidly in contact with each other, which results in the degradation of the surface by the heat and friction and finally the formation of black wear marks on the surface after a several hundred hours test. Once the black wear marks appear on the surface, the electric resistance of the probe increases sharply and so the integrity of the probe is severely damaged. In this experiment, TiN coating, which has excellent electric conductances and good wear-resistance, has been applied on the surface of collect and needle pins for preventing the surface damages. In order to achieve the homogeneous coating with a good adhesion property, special coating substrate stages and jigs were designed and applied during coating. TiN has been deposited using 99.999% Titanium target by a DC reactive sputtering method. According to the components and jigs, processing parameters, such as DC power, RF bias and the flow rate ratio of Ar and N$_2$ used as reactive gases, has been controlled to obtain good TiN films. Detailed problems and solutions for applying the new substrate stages and jigs will be discussed.

  • PDF

급속응고 Al-20wt%Si-5wt%Fe 합금분말 압출재의 강도에 관한 연구 (Fabrication of Rapidly Solidified Al-20wt%Si-5wt%Fe Alloy Powder and Mechanical Properties of its Extrudates)

  • 김택수
    • 한국분말재료학회지
    • /
    • 제1권1호
    • /
    • pp.66-71
    • /
    • 1994
  • Optical microstructures and mechanical properties of Na gas atomized Al-20Si-5Fe alloying powder and its hot extrudates were studied on 3 different types of powder size distribution. This powder showed the size distribution of 10~210 $\mu\textrm{m}$. Also the microstructures of $\alpha$-Al, primary and eutectic Si and needle shaped intermetallic compounds were observed by optical microscope. These needle shaped intermetallic compounds were identified as ${\delta}Al_4FeSi_2$- by XRD and EDX analysis. The ultimate tensile strength(UTS) of these alloy extrudates was increased from 324 to 390 MPa with decreasing powder size range from 120~210 $\mu\textrm{m}$ to 10~64 $\mu\textrm{m}$. A value of Micro-vic-kers hardness was simillar to the result of UTS. These extrudates showed better wear resistance than those of Al-20Si-2X(X : Ni, Cr, Zr), although they are insensitive to the size distribution. These results indicate that the presentation of ${\delta}Al_4FeSi_2$ intermetallic compounds contributed to the wear resistance improvement.

  • PDF

적송잎 추출물의 혈행 및 지질개선 효과 (The Effect of Pine (pinus densiflora) Needle Extracts on Blood Flow and Serum Lipid Improvement)

  • 강성림;김영경;김성구;이상현;김미향
    • 생명과학회지
    • /
    • 제19권4호
    • /
    • pp.508-513
    • /
    • 2009
  • 우리나라에서 자생하고 있는 소나무류 가운데 대표적인 적송(pinus densiflora)을 열수 및 아임계 추출하여 콜레스테롤식이에 의해 혈 중 지질함량이 증가한 상태에서 흰쥐의 지질 및 혈류, 혈소판 응집 억제를 통하여 적송잎이 혈행 및 혈청 중의 지질개선에 미치는 영향을 검토하였다. 본 실험에서는 콜레스테롤식이로 혈행 장애와 혈중의 높은 지질함량을 유도시키기 위해 흰쥐에게 3주간 0.5%콜레스테롤 식이를 투여하였고 적송의 효능을 검토하기 위해 적송잎의 열수 및 아임계추출물을 병합 투여하여 실험하였다. 그 결과 혈청 중 중성지방 및 총콜레스테롤 함량은 적송잎 추출물 투여(열수 및 아임계추출)에 의해 저하되었으며, 특히 중성지방 함량을 유의적으로 감소시키는 결과를 나타내었다. 한편 Hdl-콜레스테롤 농도는 콜레스테롤 식이 투여에 의해 감소하였으나, 적송잎 열수 및 아임계추출물 투여에 의해 증가되었다. Ldl-콜레스테롤과 동맥경화지수(AI)와 심혈관위험지수(CRF) 또한 적송잎 추출물 투여에 의해 저하되었다. 콜레스테롤 식이 투여로 인해 혈장 내 혈액응고인자(coagulation factors)의 지나친 활성화 및 혈소판 응집 촉진으로 혈류의 모세관 통과 시간이 늦어 졌으나, 적송잎 추출물의 투여로 인해 혈류의 속도가 빨라짐을 볼 수 있었고, 이는 적송잎이 혈액의 유동성에 좋은 영향을 줄 것으로 사료되어진다. 적송잎 추출물의 항혈소판 응집에 미치는 영향을 검토한 결과, 0.5%콜레스테롤 식이 투여(0.5%CHOL)군의 경우 대조군(CON)에 비해 혈소판이 응집되는 결과가 나타난 반면 적송잎 추출물을 투여한 군은 0.5%CHOL군에 비해 혈소판 응집이 억제되는 것으로 나타났다 이상의 결과로 미루어 적송잎이 혈행 개선과 혈청 중의 지질개선 효과를 나타내어 동맥경화증, 혈전증 등의 혈관 관련성 질환에 효과가 있을 것으로 기대되며, 기능성 식품 및 식재료로 사용하기 위한 앞으로의 더욱 구체적인 연구가 필요한 것으로 사료된다.

Diagnostic Accuracy of Ultrasonography in Differentiating Benign and Malignant Thyroid Nodules Using Fine Needle Aspiration Cytology as the Reference Standard

  • Alam, Tariq;Khattak, Yasir Jamil;Beg, Madiha;Raouf, Abdul;Azeemuddin, Muhammad;Khan, Asif Alam
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.10039-10043
    • /
    • 2014
  • Background: In Pakistan thyroid cancer is responsible for 1.2% cases of all malignant tumors. Ultrasonography (US) is helpful in detecting cancerous thyroid nodules on basis of different features like echogenicity, margins, microcalcifications, size, shape and abnormal neck lymph nodes. We therefore aimed to calculate diagnostic accuracy of ultrasound in detection of carcinoma in thyroid nodules taking fine needle aspiration cytology as the reference standard. Materials and Methods: A cross-sectional analytical study was designed to prospectively collect data from December 2010 till December 2012 from the Department of Radiology in Aga Khan University Hospital, Karachi, Pakistan. A total of 100 patients of both genders were enrolled after informed consent via applying non-probability consecutive sampling technique. Patients referred to Radiology department of Aga Khan University to perform thyroid ultrasound followed by fine-needle aspiration cytology of thyroid nodules were included. They were excluded if proven for thyroid malignancy or if their US or FNAC was conducted outside our institution. Results: The subjects comprised 76 (76%) females and 24 males. Mean age was $41.8{\pm}SD$ 12.3 years. Sensitivity and specificity with 95%CI of ultrasound in differentiating malignant thyroid nodule from benign thyroid nodule calculated to be 91.7% (95%CI, 0.72-0.98) and 78.94% (0.68-0.87) respectively. Reported positive predictive value and negative PV were 57.9% (0.41-0.73) and 96.8% (0.88-0.99) and overall accuracy was 82%. Likelihood ratio (LR) positive was computed to be 4.3 and LR negative was 0.1. Conclusions: Ultrasonography has a high diagnostic accuracy in detecting malignancy in thyroid nodules on the basis of features like echogenicity, margins, micro calcifications and shape.

차세대 고응답 분사용 피에조 인젝터의 노즐유동 및 분무특성에 관한 연구 (A Study on Nozzle Flow and Spray Characteristics of Piezo Injector for Next Generation High Response Injection)

  • 이진욱;민경덕
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.553-559
    • /
    • 2006
  • Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(volume of fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response In a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

Bioinspired Metal Surfaces by Plasma Treatment

  • 유의선;고태준;오규환;문명운
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.97-97
    • /
    • 2013
  • The exterior structures of natural organisms have continuously evolved by controlling wettability, such as the Namib Desert beetle, whose back has hydrophilic/hydrophobic contrast for water harvesting by mist condensation in dry desert environments, and some plant leaves that have hierarchical micro/nanostructures to collect or repel liquid water. In this work, we have provided a method for wettability contrast on metals by both nano-flake or needle patterns and tuning of the surface energy. Metals including steel alloys and aluminum were provided with hierarchical micro/nanostructures of metaloxides induced by fluorination and a subsequent catalytic reaction of fluorine ions on metal surfaces in water with various ranges from room to boiling temperature of water. Then, a hydrophobic material was deposited on the structured surfaces, rendering superhydrophobicity. Plasma oxidization induces the formation of superhydrophilic surfaces on selective regions surrounded by superhydrophobic surfaces. We show that wettability contrast surfaces align liquid water within patterned hydrophilic regions during the condensation process. Furthermore, this method could have a greater potential to align other liquids or living cells.

  • PDF

미세바늘제작 및 배열을 이용한 반 능동형 가진 약물주입기구 설계 (Semi-active Vibration Drug Delivery Device Design using a Micro-needle Fabrication and Array)

  • 성연욱;박진호;이혜진
    • 융복합기술연구소 논문집
    • /
    • 제1권1호
    • /
    • pp.48-51
    • /
    • 2011
  • Transdermal drug delivery device is a method of drug delivery through the skin. Skin has a very large area, so it is attractive route to drug delivery. When drug delivery through the skin, microneedle has a advantage that painless, constant drug deliver and penetration efficient; nevertheless the cost is expensive because fabrication process need a particular equipment and not suitable in mass production. This study shows microneedle fabrication process using convergence of general MEMS process and dicing process that can make 3-D sharp microneedle tip and this fabrication process suitable for mass production.

  • PDF

Particle Acceleration via Laser Ablation

  • Choi, Ji-Hee;Yoh, Jai-Ick
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.566-569
    • /
    • 2008
  • Recently, the biolistic process is emerging as an effective needle-free drug delivery technique to transfer adequate concentrations of pharmacologic agents to soft living tissues with minimum side effects. We have started developing an effective method for delivering drug coated particles using laser ablation. A thin metal foil with deposited micro-particles on one side is irradiated with laser beam on the opposite side so that a shock wave is generated. This shock wave travels through the foil and is reflected, which causes and instantaneous deformation of the foil. Due to such a sudden deformation, the micro-particles are ejected at a very high speed. Here we present the experimental results of direct and confined laser ablation, which correspond to the initial stage of the whole experiment.

  • PDF