• 제목/요약/키워드: Micro Milling Machine

검색결과 55건 처리시간 0.021초

고속 엔드밀 가공에서 가공변질층의 특성 (Characteristics of damaged layer in high speed end milling)

  • 김동은
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.326-331
    • /
    • 2000
  • In this study, residual stress was investigated experimentally to evaluate damaged layer in high-sped machining. In machining difficult-to-cut material, residual stress remaining in machined surface was mainly speared as compressive stress. The scale of this damaged layer depends upon cutting speed, feed per tooth and radial cutting depth. Damaged layer was measured by optical microscope. The micro-structure of damaged layer was a mixed maternsite and austenite. depth of damaged layer is increased with increasing of cutting temperature, cutting force and radial depth. On the other hand, that is slightly decreased with decreasing of cutting force. The increase of tool wear causes a shift of the maximum residual stress in machined surface layer.

  • PDF

공압 핫프레스를 이용한 마이크로 폴리카보네이트 성형에 관한 연구 (A Study on Polycarbonate Microfabrication Using a Pneumatic Hot Press)

  • 여창영;박태현
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.106-112
    • /
    • 2021
  • Thermoplastic microfluidic devices are used in BioMEMS for medical and biotechnology applications, such as gene extraction, DNA analysis, and virus detection. In this research, a simple fabrication protocol with a commercially available pneumatic hot press is proposed and demonstrated for polycarbonate microfluidic devices. Microfluidic channels with a width of 200 ㎛ and a height of 10 ㎛ were designed and machined onto a brass plate as a mold insert using a CNC milling machine. The resulting microfluidic channels on the mold insert were assessed and found to have an actual width of 198 ㎛ and a height of 10 ± 0.25 ㎛. The microfluidic channels were replicated on a polycarbonate sheet using the proposed replication technique at 146℃ for 20 minutes under a constant load of 2400 kgf. The devices were then naturally cooled to 100℃ while maintaining the same pressure. It was found that the microchannels were successfully replicated in the polycarbonate, with a width of 198 ㎛ and a height of 10.07 ㎛. The proposed replication technique thus offers the rapid mass production of high-quality microfluidic devices at a low cost with a process that, unlike conventional photolithography systems, does not require expensive equipment.

보철용 지르코니아 어버트먼트의 표면적합도와 전기화학적 거동 (Surface Compatibility and Electrochemical Behaviors of Zirconia Abutment for Prosthodontics)

  • 박근형;정용훈;김원기;최한철;김명수
    • 한국표면공학회지
    • /
    • 제42권1호
    • /
    • pp.41-46
    • /
    • 2009
  • The fit between dental implant fixture and zirconia abutment is affected by many variables during the fabrication process by CAD/CAM program and milling working. The purpose of this study was to evaluate the surface compatibility and electrochemical behaviors of zirconia abutment for prosthodontics. Zirconia abutments were prepared and fabricated using zirconia block and milling machine. For stabilization of zirconia abutments, sintering was carried out at $1500^{\circ}F$ for 7 hrs. The specimens were cut and polished for gap observation. The gap between dental implant fixture and zirconia abutment was observed using field-emission scanning electron microscopy (FE-SEM). The hardness and corrosion resistance of zirconia abutments were observed with vickers hardness tester and potentiostat. The gap between dental implant fixture and zirconia abutment was $5{\sim}12{\mu}m$ for small gap, and $40{\sim}60{\mu}m$ for large gap. The hardness of zirconia surface was 1275.5 Hv and showed micro-machined scratch on the surface. The corrosion potentials of zirconia abutment/fixture was .290 mV and metal abutment/fixture was .280 mV, whereas $|E_{pit}-E_{corr}|$ of zirconia abutment/fixture (172 mV) was higher than that of metal abutment/fixture (150 mV). The corrosion morphology of metal abutment/fixture showed the many pit on the surface in compared with zirconia abutment/fixture.

2차원절삭에서 공구이탈시 발생하는 버(Burr)와 파단에 관한 연구 (Study on the Burr Formation and Fracture at the Exit Stage in Orthogonal Cutting)

  • 고성림
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1172-1182
    • /
    • 1993
  • 본 연구에서는 버형성중의 파단을 파단전의 소성변형의 과정이 파단에 영향을 미치는 연성파단(ductile fracture)으로 간주하여 McClintock의 연성파단에 관한 모델 을 이용하여 버형성중의 파단변형도를 얻었다. 이 파단변형도가 인장시험으로부터 얻 은 파단변형도와 커다란 오차가 없음을 확인하여 편의상 인장시험에서의 파단변형도를 버형성중의 파단발생 판정기준으로 사용하였다. 버형성이 시작된 이후에 공구인선부 에서의 피삭재의 변위의 발달에 관한 모델이 제시되었고 파단변형도와 최대변형량과의 비교로부터 파단위치와 각도가 결정된다.

지르코니아 블록과 CAM 종류에 따른 코핑의 변연적합도와 기계적 특성 비교 (Comparison on marginal fitness and mechanical properties of copings with zirconia block and CAM type)

  • 정인성;전병욱;김원영;강재민
    • 대한치과기공학회지
    • /
    • 제39권2호
    • /
    • pp.75-82
    • /
    • 2017
  • Purpose: This study provided the basic data for selection the zirconia block and CAM by means of marginal fitness observations, flexural strength test and hardness test. Methods: Three dental zirconia blocks(ABCera, NaturaZ, ST98) and two dental milling machines(CAD/CAM MS, DWX-50) were used in this study. Metal abutment(diameter 10 mm, height 5 mm, inclined angle $3^{\circ}$ taper, 1 mm chamfer margin) was fabricated by Ti customized abutment, and then zirconia copings were fabricated for each ten specimens. Silicone replica technique was used to observe the marginal fitness of cross-sections with a stereomicroscope at ${\times}50$ magnification. The dental zirconia blocks was cut into 10 pieces each having a size of $25mm{\times}5mm{\times}1mm$, and fabricated according to the manufacturer's instructions, and flexural strength was measured using a universal testing machine. For hardness test, a micro Vickers hardness tester was used as it was in the flexural strength test. Statistical analysis was performed by one way ANOVA and post-test was performed by Scheffe test. Results: For marginal fitness of bucco-lingual axial, ZU group($59.7{\pm}10.3{\mu}m$) was the lowest, followed by RA, ZA, ZD, RD, RU. For marginal fitness of mesio-distal axial, ZU group($59.3{\pm}10.2{\mu}m$) was the lowest, followed by RA, ZA, RD, ZD, RU. One-way ANOVA showed statistically significant difference between groups(p<0.05). For flexural strength, ABCera block($718.0{\pm}57.2MPa$) was the highest, followed by NaturaZ, ST98. For hardness, ABCera block($1550.3{\pm}19.8Hv$) was the highest, followed by ST98, NaturaZ. There was no significant difference in flexural strength and hardness between blocks(p>0.05). Conclusion: Based on the results of this study, the type of dental zirconia block did influence the marginal fitness, and all dental zirconia blocks are expected to be suitable for clinical application. The highest flexural strength and hardness were ABCera block, and no statistically significant difference was observed.