• 제목/요약/키워드: Micro Milling

검색결과 227건 처리시간 0.024초

FIB 밀링을 이용한 나노스텐실 제작 (Nanostencil fabrication using FIB milling)

  • 김규만;정성일;오현석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.871-874
    • /
    • 2004
  • Fabrication of a high-resolution shadow mask, or called nanostencil, is presented. This high-resolution shadowmask is fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. 500 nm thick and 2x2 mm large membranes are made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. Subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to high resolution of FIB milling process, nanoscale apertures down to 70 nm could be made into the membrane.

  • PDF

분말사출성형에 의한 WC-Co 계 milling insert 제조 (WC-Co Milling Inserts Manufactured by Powder Injection Molding)

  • 성환진
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.88-95
    • /
    • 1999
  • The purpose of this study is to investigate the manufacturing feasibility of WC-Co milling inserts via Powder Injection Molding (PIM) process. WC-Co is used in a wide variety of cutting tools due to its high hardness, stiffness, compressive strength and wear resistance properties. WC-Co parts for a high stress application were conventionally produced by the press and sinter method, which were Iimited to 2 dimensional shapes. Manufacturing WC-Co parts for a high stress application by PIM implies that tool efficiency can be highly improved due to increased freedom is design. P30 grade WC powder (WC-Co-TiC-TaC system) was mixed with RIST-5B133 binder and injection molded into milling inserts (Taegu Tech. Model WCMX 06T 308). The mean grain size of the powder was about 0.8$\mu$m. Injection molded specimens were debound by solvent extraction and thermal degradation method at various conditions. The specimens were sintered at 140$0^{\circ}C$ for 1 hr in vacuum. Carbon content, weight loss, dimensional change, and macro defects of the specimen were carefully monitored at each stage of the PIM process. PIMed WC-Co milling inserts reached 100% full density after sinteing. Its mechanical properties and micro-structures were comparable with the press and sintered milling insert. Carbon content of the sintered WC-Co insert was mainly determained by the atmosphere of thermal debinding. By controlling powder loading and injection molding condition, dimensional accuracy could be obtained within 0.4%. We confirm that PIM can not only be an alternative manufacturing method for WC-Co parts economically but also provide a design freedom for more effieient cutting tools.

  • PDF

공구 진동에 대한 공구 셋팅 오차의 영향 (The Effects of Tool Setting Errors on Cutting Tool Vibrations)

  • 신영재;박경택;강병수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.199-202
    • /
    • 2005
  • High speed milling process is emerging as an important fabrication process benefits include the ability to fabricate micro and meso-scale parts out of a greater range of materials and with more varied geometry. It also enables the creation of micro and meso-scale molds for injection molding. Factors affecting surface roughness have not been studied in depth for this process. A series of experiments has been conducted in order to begin to characterize the factors affecting surface roughness and determine the range of attainable surface roughness values for the high speed milling process. It has previously been shown that run-out creates a greater problem for the dimensional accuracy of parts created by high speed milling process. And run-out also has a more significant effect on the surface quality of milled parts. The surface roughness traces reveal large peak to valley variations. This run-out is generated by spindle dynamics and tool geometry. In order to investigate the relationship between tool setting errors and surface roughness end tilted mills were used to cut aluminum samples. The results indicate that tool setting errors have significant effects on surface roughness and cutting forces.

  • PDF

Compaction and Sintering Characteristics of High Energy Ball Milled Mn-Zn Ferrite Powders

  • Lee, Hyunseung;Rhee, Hoseong;Lee, Sangsoo;Chang, Si Young
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.677-681
    • /
    • 2021
  • The Mn-Zn ferrite powders were prepared by high energy ball milling, then compacted and sintered at various temperatures to assess their sintering behavior and magnetic properties. The initial ferrite powders were spherical in shape with the size of approximately 70 ㎛. After 3 h of ball milling at 300 rpm, aggregated powders ~230 nm in size and composed of ~15 nm nanoparticles were formed. The milled powders had a density of ~70 % when compacted at 490 MPa for 3 min. In the samples subsequently sintered at 1,273 K ~ 1,673 K for 3 h, the MnZnFe2O4 phase was detected. The density of the sintered samples had a tendency to increase with increasing sintering temperature up to 1,473 K, which produced the highest density of 98 %. On the other hand, the sample sintered at 1,373 K had the highest micro-hardness of approximately 610 Hv, which is due to much finer grains.

ER유체를 이용만 마이크로 폴리싱 특성 (Characteristics of Micro-polishing using the Electro-rheological Fluid)

  • 이재종;이응숙;황경현;민승기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.38-42
    • /
    • 2002
  • In the recent, electro-rheological fluid has been used for micro polishing of the 3-dimensional micro-aspherical lens and some sectional parts with defects on the wide flat wafer. The ER fluid has the properties that its viscosity has drastic changed under some electric fields. Therefore, ER fluid can be applicable to the micro polishing fur some parts using these properties. In this paper, the experimental device has been constructed using the precision milling machine in order to micro polishing far some sectional parts of a 4 inches wafer It is consisted of a small steel electrode, a wafer fixture, DC10mA and 5KV power supply unit, and a controller unit. Using the ER experimental device, possibility of amending for wide flat wafer and micro polishing of some micro part has been analyzed.

  • PDF

마이크로 3차원 입체형상부품 제조기술 연구 (A Study on Micro Manufacturing Technology for 3-Dimensional Micro Parts)

  • 제태진;최두선;이응숙;황경현;신보성;이종찬
    • 소성∙가공
    • /
    • 제15권9호
    • /
    • pp.673-678
    • /
    • 2006
  • Demands for micro parts have increased with recent advances in IT and machinery industries. However, the present technology loaves much to be desired to effectively produce parts with the volume of $1mm^{3}$ and less by mechanical method in large quantities. This paper provides a method for efficient quantity production of complete micro 3D structure using micro end-milling cutting process. The possibility has proven via manufacturing experiment of a multistage micro complex gear structure of $500{\mu}m$ in length, $500{\mu}m$ in maximum external diameter and a volume of $1mm^{3}$ and less.

제분방법별 쌀가루의 이화학적 특성 (Physicochemical Properties of Various Milled Rice Flours)

  • 박용곤;석호문;남영중;신동화
    • 한국식품과학회지
    • /
    • 제20권4호
    • /
    • pp.504-510
    • /
    • 1988
  • 여러 종류의 제분기를 사용하여 건식 (blade hammer, test, micro mill) 및 습식과 건식병용(roller & micro mill)으로 제조한 쌀가루의 이화학적 특성을 조사 하였다. 쌀가루의 입자는 blade, hammer, test, micro mill및 roller & micro mill의 순으로 점차 미세하였으며, 입자가 미세하여 짐에 따라 색의 밝기를 나타내는 L값은 증가한 반면 a값(적색도) 및 b값(황색도)은 감소하였다. 쌀가루의 표면구조를 주사전자현미경으로 관찰한 결과 입자가 미세하여 짐에 따라 개개의 전분입자의 관찰이 용이하였다. 전분의 손상도. 말토오스 값 및 열수가용성 아밀로오스의 함량은 blade mill이 가장 낮았고 test mill이 가장 높았다. 아밀로그램상 호화개시 온도와 최고점토는 입자가 미세하여 짐에 따라 점차 낮아졌으며, 건식제분한 쌀가루 현탁액의 최고점도는 잔존하는 ${\alpha}$-아밀라아제에 의해 감소경향을 나타내었으나 습식과 건식을 병용한 쌀가루에서는 최고점도의 변화가 없었다. 건식제분의 경우 유리아미노산의 함량은 전분의 손상도가 증가함에 따라 다소 증가하였다. 쌀가루로부터 추출한 냉수가용 ${\alpha}-D-glucan$의 blue value는 $0.023{\sim}0.029$, 극대흡수파장은 $518{\sim}522nm$정도의 범위를 나타내어 이들 물질은 아밀로펙틴에 유사한 성질을 지니고 있었다.

  • PDF

STAVAX 강의 마이크로 밀링 중 가공 방향 및 절삭유체 분사형태에 따른 표면 거칠기 경향에 관한 연구 (A study on surface roughness depending on cutting direction and cutting fluid type during micro-milling on STAVAX steel)

  • 이동원;이현화;김진수;김종수
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.22-26
    • /
    • 2023
  • As Light-Emitting Diodes(LEDs) continue to advance in performance, their application in automotive lamps is increasing. Automotive LEDs utilize light guides not only for aesthetics but also to control light quantity and direction. Light guides employ patterns of a few hundred micrometers(㎛) to regulate the light, and the surface roughness(Ra) of these patterns can reach tens of nanometers(nm). Given that these light guides are produced through injection molding, mold processing technology with high surface quality micro-patterns is required. This study serves as a preliminary investigation into the development of high surface quality micro-pattern processing technology. It examines the surface roughness of the workpiece based on the cutting direction of the pattern and the cutting fluid type when cutting micro-patterns on STAVAX steel using cubic Boron Nitride(cBN) tools. The experiments involved machining a step-shaped micro-pattern with a height of 60 ㎛ and a pitch of 400 ㎛ in a 22×22 mm area under identical cutting conditions, with only the cutting direction and cutting fluid type being varied. The machining results of four cases were compared, encompassing two cases of cutting direction(parallel to the pattern, orthogonal to the pattern) and two cases of cutting fluid type (flood, mist). Consequently, the Ra value was found to be the highest(Ra 128.33 nm) when machining with the flood type in parallel to the pattern, while it was the lowest(Ra 95.22 nm) when machining with the mist type orthogonal to the pattern. These findings confirm that there is a difference of up to 25.8 % in the Ra value depending on the cutting direction and cutting fluid type.

고에너지 밀링공정을 이용한 조대 마그네슘 분말의 미세화 거동 (Refinement Behavior of Coarse Magnesium Powder by High Energy Ball Milling (HEBM))

  • 송준우;김효섭;김홍물;김택수;홍순직
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.302-311
    • /
    • 2010
  • In this research, the refinement behavior of the coarse magnesium powders fabricated by gas atomization was investigated as a function of milling time using a short duration high-energy ball milling equipment, which produces fine powders by means of an ultra high-energy within a short duration. The microstructure, hardness, and formability of the powders were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, Vickers micro-hardness tester and magnetic pulsed compaction. The particle morphology of Mg powders changed from spherical particles of feed metals to irregular oval particles, then platetype particles, with increasing milling time. Due to having HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, resulting in producing plate-type powders. With increasing milling time, the particle size increased until 5 minutes, then decreased gradually reaching a uniform size of about 50 micrometer after 20 minutes. The relative density of the initial power was 98% before milling, and mechanically milled powder was 92~94% with increase milling time (1~5 min) then it increased to 99% after milling for 20 minutes because of the change in particle shapes.

펨토초레이저를 이용한 금속 재료의 레이저 밀링 가공에 대한 연구 (Study on Laser Milling Process of Metal by Femtosecond Laser)

  • 강필식;박종인
    • 한국레이저가공학회지
    • /
    • 제17권3호
    • /
    • pp.10-14
    • /
    • 2014
  • By the specific character of femtosecond laser controlled volume of magnitude of micrometer scale could be ablated without melting phase in SKD11 and SUS304. According to the laser machining parameters various sectional shapes could be engraved on the surface of metals. Typical engraved lines were $10{\mu}m$ wide and deep. Coarse-milled surface was made $10{\mu}m$ lower than the original elevation by a bunch of laser-engraved lines in suitable spacing. The repeated banks with a height of $10{\mu}m$ could be made with the combination of the intact area.

  • PDF