• Title/Summary/Keyword: Micro Mechanical Parts

Search Result 214, Processing Time 0.022 seconds

Characteristics of Mechanical Properties and Micro Structure according to High-Frequency Induction Heating Conditions in Roll Forming Process of a Sill Side Part (실사이드 부품의 롤포밍공정에서 고주파유도가열 부가조건에 따른 기계적 특성 및 미세조직 평가)

  • Kim, Kun-Young;Choy, Lee-Jon;Shin, Hyun-Il;Cho, Jun-Haeng;Lee, Chang-Hoon;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.87-94
    • /
    • 2017
  • Hot stamping processes are possible for tensile strength 1.4 GPa but the strength reduction is appeared from the cooling performance unbalance. And the strength of roll forming process is below than that of hot stamping process owing to using the steel which is lower strength of boron steel. In this study, We provide roll forming process asssisted high-frequency induction heating to solve the problem of conventional one. The experiments were carried out at under various sill side part conditions: high-frequency induction heating conditions of 15, 18, 21, 24, 27 and 30 kW. The high-frequency induction heating temperature was checked with Infrared camera and the sill side parts of mechanical properties and microstructure were measured. The heating temperature of high frequency induction was measured to max $850^{\circ}C$ under the coil power of 30 kW. The tensile strength was 1.5 GPa and hardness was 490 Hv. The martensite structure was discovered under coil power of 30 kW. The weight of steel material sill side having thickness 1.5 mm and the boron steel sill side having thickness 1.2 mm were compared to weight effect. The boron steel sill side reduced 11.5% compared to steel. Consequently, manufacturing process of 1.5 giga-grade's sill side part was successfully realized by the roll forming assisted high-frequency induction heating methods.

A Prototype of Sensor Module to Control the Position of Hull Block for Tack Welding (선체 블록의 판접 위치 획득을 위한 센서 모듈 시제품 개발)

  • Jeon, Jeong-Ik;Lee, Jang-Hyun;Son, Gum-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.87-92
    • /
    • 2012
  • Alignment of the main plates during the tack welding is essential to block assembly since most of the curved blocks and outfitting parts are assembled on the jigs and fixtures. Tact welding of main plates is the initial process of the curved hull block assembly. Due to the heavy weight of the main plates it is difficult to locate the plate on the accurate position of the jig and fixtures before welding. The conventional masonry process requires much time and manual work in order to achieve the accurate alignment. This labour-intensive process results in relatively high errors and correction works. Due to their larger dimensions and heavier weights, these hull blocks are not ergonomically desirable and, therefore, various mechanical devices such as hydraulic balancers or hydraulic jigs are used for the plate alignment. In this study, the position-sensing scheme implemented by sensors is presented in order to align the main plates on the accurate position during the hull block assembly. Integrating the Infrared photo sensors and micro processor unit, a small scaled prototype of the position-sensing module is developed to determine the alignment of main plates.

The Characteristics of Ultrasonic Signals for Detecting Micro-Defects in Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 내부 미소결함에 따른 초음파 신호 특성 연구)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Kubota, M.;Murakami, Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.591-597
    • /
    • 2001
  • Ti alloy is used for essential parts of aircraft for high temperature environment. Although Ti alloy has excellent performance in regard to mechanical properties, it is difficult ot find fatigue cracks by nondestructive ultrasonic inspection due to its two-phase microstructure, which consists of hard alpha and beta phases. Sound energy reflected from microstructural features in the component produces a background inspection noise which is seen even when no defects are present. This noise can inhibit the detection of critical internal defects such as pores cracks or inclusions. To obtain fundamental data on ultrasonic inspection of Ti alloy, ultrasonic testing was performed using a specimen with small drill holes and ultrasonic wave propagation velocites were measured.

  • PDF

A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate (Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구)

  • Kim, In-Ho;Lee, Gil-Young;Ju, Jeong-Min;Park, Kyoung-Tae;Chun, Byong-Sun
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

The Development of Automatic Inspection System of Differential Driver Gear through Research Convergence of Industrial and Academia (산학 융합 연구를 통한 차동 기어 자동 검사 시스템의 개발)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.257-263
    • /
    • 2018
  • The purpose of this study is to develop an automatic inspection system for a part of the differential drive gear into the transmission. This technology will make using the microvision automatic test equipment and automatic test equipment microlaser. This is that the operator intends to make the defect rate 0 in the inspection stage of the product which has been carelessly processed. The equipment developed in this research project will be applied to many areas. Packaging companies, nut bolt processing company, precisely supplier for printing on top of the semiconductor, SMT, etc. The company wants to sell the vision inspection equipment for various applications. If the defective rate of 0 is achieved through this research project, it is also possible to secure a stable supply from the parent company, and to lay the foundations for exporting based on product reliability. When the automatic inspection system is applied to domestic automobile parts processing companies, the reliability of automobiles in Korea will be greatly increased.

Study on MEMS based IMU & GPS Performance in Urban Area for Light-Weighted Mobile Mapping Systems (경량 모바일매핑시스템을 위한 도심지 내 MEMS 기반 IMU/GPS 통합센서(MTi-G) 특성 연구)

  • Woo, Hee-Sook;Kwon, Kwang-Seok;Kim, Byung-Guk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • With the development of MEMS, small and low-priced sensors integrating IMU and GPS have produced and exploited for diverse field. In this research, we have judged that MEMS-based IMU/GPS sensor is suitable for light-weighted mobile mapping system and carried out experiments to analyze the characteristics of MTi-G, which was developed from XSens company. From a sensor which fixed to dashboard, coordinates results with no post-processing were achieved for test area. On the whole, the results show satisfactory performances but some errors also were discovered from parts of the road due to sensor properties, XKF characteristics and GPS reception environment. We could confirm the potential of light-weighted mobile mapping system. Experiments considering various GPS reception environments and road condition and more detailed level of accuracy analysis will be performed for further research.

Analysis of the Change in Microstructures of Nano Copper Powders During the Hydrogen Reduction using X-ray Diffraction Patterns and Transmission Electron Microscope, and the Mechanical Property of Compacted Powders (X-선 회절 패턴 측정과 투과 전자 현미경을 이용한 구리 나노분말의 수소 환원 처리 시 발생하는 미세조직 변화 및 치밀화 시편의 물성 분석)

  • Ahn, Dong-Hyun;Lee, Dong Jun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relatively high temperature of $350^{\circ}C$ in order to eliminate surface oxide layers, which are the main obstacles for fabricating a nano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure before and after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patterns using the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD line profile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduction treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as the basis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of the particles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results demonstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders is achieved.

The Convergence Application Example of Non-destructive Inspection System (비파괴 검사 시스템의 융합 적용 사례)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • This development is for non-destructive machine using X-Ray source about detecting outline faults of below middle size products. The differentiation is product of research and development unspecialized small and medium-sized products using X-Ray light sources can check real time if the surface of an external fault of radiation dose reference, within the leakage. The speed control is possible by software solution. In addition, we're working on possibly block doors for worker safety and equipment at the same time that inner drive can be identified in the image. These principles, as a key enabler of the current inspection system such as the container is small to medium-sized parts - a long way from utilization level is possible. This research will give rise to major effects for other various non-destructive market industries except car-industry. The most important fact is that this developed non-destructive machine is controlled below $0.2micro-S{\mu}v$.

Development of Pressure Sensor for Identifying Guinea Pig's Large Intestinal Motility Caused by Drug (약물 투여에 따른 기니피그 대장 운동 측정을 위한 압력센서 개발)

  • Park, Jae-Soon;Park, Jung-Ho;Kim, Eung-Bo;Cho, Sung-Hwan;Jang, Su-Jeong;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • In this paper, in order to quantify the peristalsis occurrence in a guinea pig's large intestine, a miniaturized air-gap capacitive pressure sensor was fabricated through micro-electro-mechanical system (MEMS). The proposed pressure sensor is a two-layered biocompatible polyimide substrate consisting of an air-gap capacitive plates between the substrates. The proposed pressure sensor was designed with a careful consideration of the structure and motility mechanism of the guinea pig's large intestine. Artificial pellets were mounted on a prototype pressure sensor to provide some redundancies in the form of size and shape of the guinea pig feces. Capacitance of a prototype sensor was recorded to be 2.5 ~ 3 pF. This capacitance value was later converted to count value using a lab fabricated data conversion system. Sensitivity of the pressure sensor was recorded to be below 1 mmHg per atmospheric pressure. During in vivo testing, artificial peristalsis caused by drug injection was measured by inserting the prototype pressure sensor into the guinea pig's large intestine and pressure data obtained due to artificial peristalsis was graphed using a labview program. The proposed pressure sensor could measure the pressure changes in the proximal, medial, and distal parts of the large intestine. The results of the experiment confirmed that pressure changes of guinea pig's large intestine was proportional to the degree of drug injection.

Biomimetic Gyroscope Integrated with Actuation Parts of a Robot Inspired by Insect Halteres (평형곤을 모사한 생체모방형 구동부 일체형 각속도 센서)

  • Jeong, Mingi;Kim, Jisu;Jang, Seohyeong;Lee, Tae-Jae;Shim, Hyungbo;Ko, Hyoungho;Cho, Kyu-Jin;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.705-709
    • /
    • 2016
  • Micro-electro-mechanical systems (MEMS) gyroscopes are widely used in various robot applications. However, these conventional gyroscopes need to vibrate the proof mass using a built-in actuator at a fixed resonance frequency to sense the Coriolis force. When a robot is not moving, the meaningless vibration of the gyroscope wastes power. In addition, this continuous vibration makes the sensor vulnerable to external sound waves with a frequency close to the proof-mass resonance frequency. In this paper, a feasibility study of a new type of gyroscope inspired by insect halteres is presented. In dipterous insects, halteres are a biological gyroscope that measures the Coriolis force. Wing muscles and halteres are mechanically linked, and the halteres oscillate simultaneously with wing beats. The vibrating haltere experiences the Coriolis force if the insect is going through a rotational motion. Inspired by this haltere structure, a gyroscope using a thin mast integrated with a robot actuation mechanism is proposed. The mast vibrates only when the robot is moving without requiring a separate actuator. The Coriolis force of the mast can be measured with an accelerometer installed at the tip of the mast. However, the signal from the accelerometer has multiple frequency components and also can be highly corrupted with noise, such that raw data are not meaningful. This paper also presents a suitable signal processing technique using the amplitude modulation method. The feasibility of the proposed haltere-inspired gyroscope is also experimentally evaluated.