• Title/Summary/Keyword: Micro Injection

Search Result 452, Processing Time 0.021 seconds

Study of injection molded pattern transferability of double-sided micro-patterned automotive thick light guides (양면 마이크로 패턴 차량용 후육 라이트 가이드의 사출성형 패턴 전사성에 관한 연구)

  • Dong-won Lee;Sang-Yoon Kim;Ji-Woo Kim;Jong-Su Kim;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.42-51
    • /
    • 2023
  • In this study, we investigated the injection molding technology of thick-walled light guides, which are parts that control the light source of automotive lamps. Through injection molding analysis, the gate position that can minimize product shrinkage and deformation was selected, and a mold reflecting the analysis results was manufactured to evaluate the effect of injection speed and holding pressure on transferability during micro-pattern molding through experiments. When designing an injection mold for products with varying thicknesses, it was found that installing the gate on the side of the thicker part was advantageous for reducing volume shrinkage and deformation. It was found that the effect of shrinkage due to thickness may be greater than the position of the gate on pattern transferability. The pattern transfer error decreased as the injection speed and holding pressure increased, and it was found that increasing the injection speed was relatively effective.

A Study of Surface Improvement for Automotive Part by Injection Mold of Electronic Heating (전류가열 사출금형에 의한 자동차 부품의 표면개선에 관한 연구)

  • Choi, Dong-Hyuk;Hwang, Hyun-Tae;Son, Dong-Il;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • The light-weight of the research and development materials is actively carried out by overseas automobile companies and technology development continues in Korea. For the sake of fuel efficiency, the development of lightweight technology by improving the manufacturing method has been very effective. Recently, to maximize the effects of light weight, automotive interior parts have been applied by the micro-cellular injection molding using supercritical fluids and we call the Mucell manufacturing. This technique causes a problem in the quality of the surface of the products, because the shooting cells are revealed as the surface layer of the products by forming micro cells at the center of the products during injection molding. To overcome these phenomenon, we increased the temperature of injection molding using joule heating until critical value. In this study, we have predicted the problem of Mucell injection molding through the finite element analysis as changed the temperature by joule heating. From the result of finite element analysis, we have determined the optimized process and made the injection mold included electric current heating system with Mucell manufacturing analyzed the surface characteristics of the injection product according to changing mold temperature.

An Experimental Study on the Replication Ratio of Micro Patterns considering the Thickness Change of Injection Molded Parts (사출성형품의 두께변화에 따른 마이크로 패턴의 전사율에 관한 실험적 연구)

  • Jeong, C.;Kim, J.D.;Kim, J.S.;Yoon, K.H.;Hwang, C.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.176-179
    • /
    • 2009
  • Injection molding is one of the most general manufacturing processes of polymers. The deformation of final molded parts occurs because of the change of temperature and pressure during injection molding process. The deformation of injection molded parts depends on many operational conditions, such as, melt temperature, injection speed, mold temperature, packing pressure, and the structure of mold. In the present paper, injection molding experiments were performed to find the process conditions to affect the average shrinkage in thickness direction and the replication ratio of fine patterns on the surface for the final injection-molded LGP samples. As a results, in the cases of PC(Polycarbonate), when the melt temperature was under $285^{\circ}C$, both average shrinkage and replication ratios were mainly influenced by packing pressure. However, the replication ratio was more influenced by melt temperature than packing pressure for the cases of higher melt temperature.

  • PDF

Development of µ-PIM standard mold with exchangable insert core in order to manufacture micro pattern (마이크로 패턴 성형을 위한 인서트 코어 적용 µ-PIM 표준금형 개발에 관한 연구)

  • Park, Chi Yoel;Seo, Chan-Yoel;Kim, Yongdae
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2017
  • Increased demand for parts with micro-pattern structure made of metals, ceramics, and composites in various fields such as medical ultrasonic sensors, CT collimators, and ultra-small actuator parts. Micro powder injection molding (PIM) is a technology for manufacturing micro size, high volume, complex, precision, net-shape components from either metal or ceramic powder. In the present study, a standard mold with a variable insert core capable of producing various micro patterns was investigated. An injection molding test was performed on a standard mold using a line type micro-pattern core having an aspect ratio of 2, a slenderness ratio of 70, a pattern size of $200{\mu}m$, and a pattern spacing of $150{\mu}m$. During the filling process, the deformation of the mold with large aspect ratio and slenderness ratio was analyzed by the experiment and the numerical simulation according to the position of the gate. We proposed a mold structure that minimizes mold deformation by gate modification and enables uniform pattern filling behavior.

Study on flow behavior of polymer solutions in microchannels (미세구조 내에서의 사출성형 흐름에 관한 연구)

  • Kim Dong-Hak;Xu Guojun;Koelling Kurt W.;Lee L.James
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.471-475
    • /
    • 2006
  • Filling the microchannels is very important in designing micro-injection molding, microdevices, etc. In this paper, flow dynamics was studied in injection molding with microchannels. A transparent PMMA mold was designed and the flow dynamics was observed. The experiment was performed using poly (ethylene oxide) (PEO) and polyacrylamide (PA) aqueous solutions. The transignt dynamic flow and flow competition between the base plate and the microchannels were observed. The flow observation was used to explain previous filling length results in microchannels during micro-injection molding.

  • PDF

A Study on the Effect of Optical Characteristics in 2 inch LCD-BLU by Aspect Ratio of Optical Pattern: II. Mold and Optical Characteristics (휴대폰용 2인치 LCD-BLU의 광특성에 미치는 광학패턴 세장비의 영향 연구 : II. 금형 및 광특성)

  • Kim, J.S.;Ko, Y.B.;Yu, J.W.;Min, I.K.;Hwang, C.J.;Yoon, K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.95-98
    • /
    • 2006
  • LCD-BLU (Back Light Unit) is one of kernel parts of LCD unit. The fabrication method of a 3-D micro mold patterned with micro-lenses for the LGP (Light Guiding Plate), one of the most important parts of LCD-BLU, was presented. Instead of dot pattern made by etching, 3-D optical pattern design with $50{\mu}m$ micro-lens was applied in the present study. The micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP. The positive micro-lens patterned injection mold with different aspect ratios (i.e. 0.3 and 0.4) was fabricated with modified LiGA with thermal reflow process. The brightness of LCD-BLU increased as aspect ratio of micro-lens increased.

  • PDF

Fabrication of micro injection mold with modified LIGA micro-lens pattern and its application to LCD-BLU

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.165-169
    • /
    • 2007
  • The light guide plate (LGP) of LCD-BLU (Liquid Crystal Display-Back Light Unit) is usually manufactured by forming numerous dots by etching process. However, the surface of those etched dots of LGP is very rough due to the characteristics of etching process, so that its light loss is relatively high due to the dispersion of light. Accordingly, there is a limit in raising the luminance of LCD-BLU. In order to overcome the limit of current etched-dot patterned LGP, micro-lens pattern was tested to investigate the possibility of replacing etched pattern in the present study. The micro-lens pattern fabricated by the modified LiGA with thermal reflow process was applied to the optical design of LGP. The attention was paid to the effects of different optical pattern type (i.e. etched dot, micro-lens). Finally, the micro-lens patterned LGP showed better optical qualities than the one made by the etched-dot patterned LGP in luminance.

The Insulation Property of Microcellular Injection Molding Plastics (초미세 발포 사출 성형품의 단열 특성)

  • Lee, Jung-Hyun;Hong, Soon-Kug;Kim, Ji-Hyun;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.263-268
    • /
    • 2001
  • MCPs means Micro Cellular Plastics. The micro-cells are generated in the products by the difference of dissolution through the pressure drop after super critical fluid of CO2 or N2 dissolves into polymer. We have developed injection molding process adopting MCPs and applied it to a broad range of injection molded thermoplastic materials and applications. It can prevent the leakage of impact strength and increase the thermal conductivity, moreover regulate the thermal conductivity. Then we can develop the high strength foaming plastics. Also, it can be gained a competitive advantage by utilizing its processing benefits, e.g. the lightweight products and significant reductions in material consumption.

  • PDF

An Experimental Study on Molding Factor for Spiral Type Micro Injection Product (스파이럴 형상 미세사출품의 성형 인자에 대한 실험적 연구)

  • Jung W. C.;Heo Y. M.;Shin K. H.;Yoon G. S.;Chang S. H.;Kim M. Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.65-70
    • /
    • 2006
  • In recent industry, with the miniaturization and high-precision of machine part, the development of mold manufacturing technology for mass production is accompanied by the development of new technology such as IT and BT In this study, the spiral type injection mold with a $200{\mu}m$ thickness is made to. investigating the influence of injection molding parameter and the flow length is measured through an experiment. Besides, Taguchi method is used in this experiment and the obtained data are analyzed using ANOVA method.

A Study on a In-mold Packaging Process using Injection Molding (사출성형을 이용한 마이크로 채널의 패키징 공정에 관한 연구)

  • Lee, Kwan-Hee;Park, Duck-Soo;Yoon, Jae-Sung;Yoo, Yeong-Eun;Choi, Doo-Sun;Kim, Sun-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1821-1824
    • /
    • 2008
  • A novel in-mold packaging process has been developed to manufacture devices with closed channels. In this unified process, fabrication of open channels and forming the rigid cover on top of them are sequentially integrated in the same mold. The entire process is comprised of two phases. In the first phase, the open channels are fabricated under an exquisitely controlled temperature and pressure using the conventional micro injection molding technology. In the second phase, the closed channels are fabricated by conducting the injection molding process using the molded structure with the open channels as a mold insert. As a result, the in-mold technology can eliminate the bonding processes such as heating, ultrasonic or chemical processes for cohesion between the channel and the cover, which have been required in conventional methods.

  • PDF