• 제목/요약/키워드: Micro Hole Fabrication

검색결과 46건 처리시간 0.028초

MICRO HOLE FABRICATION BY MECHANICAL PUNCHING PROCESS

  • Joo B. Y.;Rhim S. H.;Oh S. I.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.179-188
    • /
    • 2003
  • The objective of our study is to investigate the micro fabric ability by conventional metal forming processes. In the present investigation, micro hole punching was studied. We tried to control punching process at the micro level and scaled down the standard blanking condition for $25{\mu}m$ hole fabrication. To accommodate this, tungsten carbide tooling sets and micro punching press were carefully designed and assembled meeting accuracy requirements for $25{\mu}m$ hole punching. With our developments, 100, 50, and $25{\mu}m$ holes were successfully made on metal foils such as brass and stainless steel of 100, 50, and $25{\mu}m$ in thickness, respectively, and hole sizes and shapes were measured and analyzed to investigate fabrication accuracy. Shear behavior during micro punching was also discussed. Our study showed that the conventional punching process could produce high quality holes down to $25{\mu}m$.

  • PDF

UV 레이저에 의한 블라인드 비아홀 가공 (Blind via Hole manufacturing technology using UV Laser)

  • 장정원;김재구;신보성;장원석;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.160-163
    • /
    • 2002
  • Micro via hole Fabrication is studied by means of minimizing method to circuit size as many electric products developed to portable and minimize. Most of currently micro via hole fabrication using laser is that fabricate insulator layer using CO2 Laser after Cu layer by etching, or fabricate insulator layer using IR after trepanning Cu by UV. In this paper, it was performed that a metal layer and insulator layer were worked upon only one UV laser, and increase to processing speed by experiment.

  • PDF

미세 구멍가공을 위한 전극성형 가공특성에 관한 연구 (A Study on the Characteristics of Electrode Fabrication for Micro Hole-making)

  • 이주경;이종항;박철우;조웅식
    • 대한기계학회논문집A
    • /
    • 제31권11호
    • /
    • pp.1053-1058
    • /
    • 2007
  • Micro-EDM technology (or the manufacture of miniature parts is used to make a micro hole. Two electrode shaping methods, mechanical electrode grinding and WEDG technique, have been studied. In this study, an electrode shaping method by using previously machined hole is introduced in order to obtain an optimal hole-making condition. Key factors such as applied voltage, capacitance, feedrate, and hole-dimension have an influence on the fabricating error of electrode shaping, which are taper ratio of a hole, electrode form accuracy, and electrode surface. Therefore, we try to investigate the optimal fabricating of electrode shaping from various experiments. Results from experiments, it was able to minimize the electrode fabricating error as voltage increases, and also applied feedrate and capacitance decreases.

극대세장비 마이크로 홀을 이용한 양성자 빔 집적 응용 (A Proton Beam Shaping using an Extreme Aspect Ratio Micro-hole)

  • 김진남;권원태;이성규
    • 한국정밀공학회지
    • /
    • 제29권7호
    • /
    • pp.737-744
    • /
    • 2012
  • EDM is the manufacturing process that uses the thermal energy to machine electrically conductive part. Despite a lot of research has been conducted for decades, the best aspect ratio of the micro hole using micro-EDM has not been over 30, yet. In the present study, new fabrication scheme was introduced to increase the aspect ratio of micro hole dramatically. Micro holes with less than 10 aspect ratio were aligned and welded together to manufacture a micro hole with extreme aspect ratio. Alignment of the micro hole with over 380 aspect ratio was conducted by the home-made apparatus installed with microscope and laser beam. The micro hole with extreme aspect ratio was used to shape pencil beam from proton beam generated from MC-50 cyclotron. The pencil beam was utilized to machine test specimen whose result was compared with GEANT4 computer simulation. It was shown that the experimental and simulation result were closer as the aspect ratio of the micro hole was bigger.

Nanohole Fabrication using FIB, EB and AFM for Biomedical Applications

  • Zhou, Jack;Yang, Guoliang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권4호
    • /
    • pp.18-22
    • /
    • 2006
  • Although many efforts have been made in making nanometer-sized holes, there is still a major challenge in fabricating individual single-digit nanometer holes in a more controllable way for different materials, size distribution and hole shapes. In this paper we describe our efforts to use a top down approach in nanofabrication method to make single-digit nanoholes. There are three major steps towards the fabrication of a single-digit nanohole. 1) Preparing the freestanding thin film by epitaxial deposition and electrochemical etching. 2) Making sub-micro holes ($0.2{\mu}\;to\;0.02{\mu}$) by focused ion beam (FIB), electron beam (EB), atomic force microscope (AFM), and others methods. 3) Reducing the hole size to less than 10 nm by epitaxial deposition, FIB or EB induced deposition and micro coating. Preliminary work has been done on thin films (30 nm in thickness) preparation, sub-micron hole fabrication, and E-beam induced deposition. The results are very promising.

방전 미세구멍가공 특성의 고찰 (A Study on the Micro Hole Machining Characteristics in WEDG method)

  • 정태현;박규율
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.953-956
    • /
    • 1997
  • Micro drilling characteristics by EDM method was investigated. In detail, Micro tool electrode for EDM drilling was machined by use of WEDG method and micro hole was drilled using the machined tool electrode in SUS plate. The machining accuracy and time was compared in a different dielectric fluid. As a result, it was convinced that this method could be utilized as a fabrication technology of micro mold or micro 3 dimensional parts.

  • PDF

금속 소재의 미세 홀 펀칭 시 전단 파괴 거동 연구 (A Study on Shear Fracture Behavior of Metal in Micro Hole Punching Process)

  • 유준환;임성한;주병윤;오수익
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.314-319
    • /
    • 2003
  • In the micro hole punching, the size and shape of burr and burnish zone are very important factors to evaluate quality of micro holes which depend on punch-die clearance, strain rate, workpiece material and etc. To get micro holes with small burr and wide burnish zone for industrial demands, not only the parametric study but also a study on fracture behavior in shear band are necessary. In this study, 100 $\mu$m, 25 $\mu$m micro holes in diameter were fabricated on brass (Cu63/Zn37) and SUS 316 foils as aspect ratio 1:1, and the characteristics of micro holes was investigated comparing with those of macro holes over several mm by scanning electron microscopic views and section views. Like macro hole, micro hole is also composed of 4 portions, rollover. burnish zone, fracture zone and burr, and it shows similar fracture behavior in shear band. But by high strain rate (10$^2$∼10$^3$s$^{-1}$ ) condition unlike that of macro hole fabrication and by the increment of relative grain size in the direction of the workpiece thickness, fracture zone is not observed.

미세 홀 펀칭시 전단 파괴 거동 연구 (A Study on Fracture Behavior in Shear Band during Micro Hole Punching Process)

  • 유준환;임성한;주병윤;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.230-235
    • /
    • 2003
  • In the micro hole punching, the size and shape of burr and burnish zone are very important factors to evaluate quality of micro holes which depend on punch-die clearance, stain rate, workpiece material and etc. To get micro holes with small burr and wide burnish zone for industrial demands, not only the parametric study but also a study on fracture behavior in shear band are necessary. In this study, 100 $\mu\textrm{m}$, 25 $\mu\textrm{m}$ micro holes in diameter were fabricated on brass (Cu63/Zn37) and SUS 316 foils as aspect ratio 1:1, and the characteristics of micro holes was investigated comparing with man holes over several mm by scanning electron microscopic views and section views. Like macro hole, micro hole is also composed of 4 portions, rollover, burnish zone, fracture zone and it shows similar fracture behavior in shear band, but? by high strain rate (10$^2$∼ 10$^3$s$\^$-1/) unlike macro hole fabrication and increment of relative grain size several different results are shown.

  • PDF

마이크로 공구를 이용한 미세 구멍 가공기술 (Micro-hole Machining Technology for using Micro-tool)

  • 허남환;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1897-1901
    • /
    • 2003
  • Recently, with the development of semiconductor technology the miniaturization of products as well as parts and the products with high precision are being required. In addition as a national competitive power is increasingly effected by micro part development through micro machining and the secure of micro machining technology, the study of micro machining technology is being conducted in many countries. The goal of this study is to fabricate micro tool under the size of 30$\mu\textrm{m}$ and machine micro holes through micro tool fabrication by grinding, the application of ELID to grinding wheel and the measurement of surface roughness for micro tool.

  • PDF