• Title/Summary/Keyword: Micro Gap

Search Result 304, Processing Time 0.027 seconds

Adjustment of Roll Gap for The Dimension Accuracy of Bar in Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • Kim, Dong-Hwan;Kim, Byung-Min;Lee, Young-Seog
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.96-103
    • /
    • 2002
  • The objective of this study is to adjust the roll gap fur the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes fur round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental from and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

Adjustment of Roll Gap for the Dimension Accuracy of Bar in Hot Bar Rolling Process

  • Kim, Dong-Hwan;Kim, Byung-Min;Lee, Youngseog
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.56-62
    • /
    • 2003
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

Electrical Conductivity of Dielectric on WEDM Characteristics (WEDM 가공특성에 대한 방전액의 전기전도율의 영향)

  • Kim, Chang-Ho;Yeo, Hong-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1800-1808
    • /
    • 2003
  • This work deals with the electrical conductivity of dielectric on output parameters such as metal removal rate and surface roughness value of a carbon steel(SM25C) and sintered carbides cut by wire-electrical discharge machining(W-EDM). Dielectric has several functions like insulation, ionization, cooling, the removal of waste metal particles. The presence of minute particles(gap debris) in spark gap contaminates and lowers the breakdown strength of dielectric. And it is considered that too much debris in spark gap is generally believed to be the cause of arcing. Experimental results show that increases of cobalt amount in carbides affects the metal removal rate and worsens the surface quality as a greater quantity of solidified metal deposits on the eroded surface. Lower electrical conductivity of the dielectric results in a lower metal removal rate because the gap between wire electrode and workpiece reduced. Especially, the surface characteristics of rough-cut workpiece and wire electrode were analyzed too. Debris were analyzed also through scanning electron microscopy(SEM) and surface roughness tester. Micro cracks and some of electrode material are found on the workpiece surface by energy dispersive spectrometer(EDS).

Adjustment Of Roll Gap For The Dimension Accuracy Of Bar In Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • 김동환;김병민;이영석;유선준;주웅용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1036-1041
    • /
    • 1997
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

  • PDF

A Study on the Characteristics of High Pressure DC Glow Discharge with a Narrow Gap (좁은 간격의 고압 DC 글로우 방전에서의 방전물성에 관한 연구)

  • Park, Jae-Seong;Jeong, Heui-Seob;Shin, Buhm-Jae;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.435-437
    • /
    • 1995
  • It is important to understand tile behaviours of tile high pressure DC glow discharge with a micro gap inside a pixel of the plasmas display panel. We prepared a narrow gap discharge system and have measured electron temperature and density by means of double probe methods in high pressure which was between 100torr and 200torr. And the electrode gap was 7mm. When the pressure varied from 100torr to 200torr, the negative glow was created at a distance less than 1mm from the cathode. And the length of the faraday dark space decreased from 8mm to 5mm. Hence probe measurements was mainly, performed in the region of the Faraday dark space. The dependence of electron temperature and density on the pressure and current density was same with that of the general flow discharge, i.e. as the pressure increased the electron temperature decreased and the density increased. But the spatial electron density distribution in the Faraday dark space was highly distorted because of the effect of high pressure.

  • PDF

Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems

  • Kim, Dong-Yeon;Kim, Eo-Bin;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.463-469
    • /
    • 2017
  • PURPOSE. To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. MATERIALS AND METHODS. One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (${\alpha}=.05$). RESULTS. The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups (P<.001). In the marginal area where pontic was present, the largest gap was $149.39{\pm}42.30{\mu}m$ in the AM group, and the lowest gap was $24.40{\pm}11.92{\mu}m$ in the SM group. CONCLUSION. Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically.

A Study of Micro Freestanding Structure Fabrication using Nickel Electroless Plating And Silicon Anisotropic Etching (무전해 니켈 도금과 실리콘의 이방성 식각을 이용한 미세 가동 구조물의 제작방법에 관한 연구)

  • Kim, Seong-Hyok;Kim, Yong-Kweon;Lee, Jae-Ho;Huh, Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.367-374
    • /
    • 2000
  • This paper presents a method to fabricate freestanding structures by (100) silicon anisotropic etching and nickel electroless plating. The electroless plating process is simpler than the electroplating, and provides good coating uniformity and improved mechanical properties. Furthermore, the (100) silicon anisotropic etching in KOH solution with being aligned to <100> direction provides vertical (100) sidewalls on etched (100) surface. In this paper, the effects of the nickel electroless plating condition on the properties of electroless plated metal structures are investigated to apply fabrication of micro structures and then various micro structures are fabricated by nickel electroless plating. And then, the structures are released by silicon anisotropic etching in KOH solution with a large gap between the structure and the substrate. The fabricated cantilever structures are $210\mum$. wide, $5\mum$. thick and $15\mum$. over the silicon substrate, and the comb structure has the comb electrodes which are $4\mum$. wide and $4.3\mum$. thick separated by$1\mum$. It is released by silicon anisotropic etching in KOH solution. The gap between the structure and the substrate is $2.5\mum$.

  • PDF

Physical Properties of Microencapsulated Phase Change Material Slurries (미립잠열슬러리의 물성에 관한 실험적 연구)

  • 이효진;홍재창;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.860-869
    • /
    • 2000
  • The thermal conductivity and density of slurries entrained with the particles of Micro-PCM are measured with respect to its temperatures as well as concentrations. For the thermal conductivity of slurries, a device made from P.A. Hilton (Model No. H470) is adopted. There is a well-scaled 0.3 mm gap between shells into which the slurry is injected. The temperatures of the slurry are changed to $5~25^{\circ}C$ , for which it is controled by the supplied voltage and cooling water circulated around the outer shell. The concentrations of Micro-PCM slurries are varied from 5 wt% to 50 wt%. Some general equations such as Maxwell's equation, are evaluated for their applicability with Micro-PCM slurry. As a result, it happens to be some 20% discrepancy between the experiment and the applied equations. The density measurements of Micro-PCM slurry to its temperature and concentration are peformed by hydrometer. For the experiment, tetradecane encapsulated slurry (($t_m≒6^{\circ}C$) and a mixed wax ($t_m≒50^{\circ}C$) are tested. The temperature changes of tetradecane are applied for $0^{\circ}C\;to\;$20^{\circ}C$and a mixed wax for $20^{\circ}C\;to\;$60^{\circ}C$ and its concentrations are changed from 5 wt% to 30 wt%. The results are compared with a general equation and the referenced data. For the conclusion, the experimental result and a general equation are well agreed.

  • PDF

Real-time Gap Control for Micro-EDM: Application in a Microfactory

  • Jung, Jae-Won;Ko, Seok-Hoon;Jeong, Young-Hun;Min, Byung-Kwon;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.3-6
    • /
    • 2008
  • Electrical discharge machining (EDM) is one of the most widespread nonconventional machining processes. Recently, a low-power micro-EDM process was introduced using a cylindrical electrode. Since its development, micro-EDM has been applied effectively to micromachining, and because the device setup for this process is simple, it is suitable for a microfactory that minimizes machines to fabricate small products economically in one system. In the EDM process, however, the electrode is also removed along with the workpiece. Therefore, the electrode shape and length vary as machining progresses. In this paper, a control method using a high speed realtime voltage measurement is proposed to regulate the rate and amount of material removed. The proposed method is based on the assumption that the volume of the workpiece removed in a single discharge pulses is nearly constant. The discharge pulses are monitored and controlled to regulate the amount of material removed. For this purpose, we developed an algorithm and apparatus for counting the number of discharge pulses. Electrode wear compensation using pulse number information was applied to EDM milling in a microfactory, in which a slight tilt of the workpiece may occur. The proposed control method improves the machining quality and efficiency by eliminating the inaccuracies caused by electrode wear and workpiece tilt.

Experimental Study and Process Optimization for Vibration-assisted Dry Micro-WEDM (진동을 이용한 건식 마이크로-WEDM 에 대한 실험적 연구 및 프로세스 최적화)

  • Hoang, Kien Trung;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.215-222
    • /
    • 2014
  • This paper presents an experimental study of a vibration-assisted dry micro-wire electrical discharge machining (${\mu}$-WEDM) utilized in high precision and micro-manufacturing area. The assisted vibration was applied to the workpiece using a piezoelectric actuator, and high pressure air was injected directly into the machining gap through a nozzle. Investigation experiments were performed to estimate the importance of input parameters and it was observed from experiment results that the width (kerf) of the cutting slot and the machining time were significantly affected by the air injection pressure and input energy. Moreover, it was also observed that there exists an optimal relationship between the machining time and input parameters including the air pressure and vibration frequency and amplitude. Central composite design based experiments were also carried out, and empirical models of the machining time and cutting slot kerf have been developed using the response surface methodology to analyze and optimize the process.