• Title/Summary/Keyword: Micro Degree

Search Result 405, Processing Time 0.026 seconds

Evaluation of Acid Resistance of Demineralized Dentin after Silver Diamine Fluoride and Potassium Iodide Treatment (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 변화하는 탈회 상아질의 내산성 평가)

  • Haesong, Kim;Juhyun, Lee;Siyoung, Lee;Haeni, Kim;Howon, Park
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.4
    • /
    • pp.392-401
    • /
    • 2022
  • This study investigated the effects of silver diamine fluoride (SDF) and potassium iodide (KI) treatments on the acid resistance of dentin exposed to secondary caries. Sixteen bovine dentin specimens with artificially induced caries were assigned to the following four groups: untreated negative control, untreated positive control, SDF-treated (SDF), and SDF and KI-treated (SDFKI). Multispecies cariogenic biofilms containing Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens for 28 days, except for the negative control group. Specimens from the negative control group were stored in phosphate-buffered saline for that period. After a cariogenic biofilm challenge, the degree of demineralization was evaluated using micro-computed tomography (micro-CT). As a result of data analysis using micro-CT, the demineralization depths of the negative control, positive control, SDF, and SDFKI groups were 149.0 ± 7 ㎛, 392.0 ± 11 ㎛, 206.0 ± 20 ㎛, and 230.0 ± 31 ㎛, respectively. The degree of demineralization was significantly reduced in the SDF and SDFKI groups compared with that in the untreated positive control group. There were no significant differences between the SDF and SDFKI groups. This study confirmed that SDF and SDFKI treatments increase the acid resistance of dentin to secondary caries. KI did not significantly affect the caries-arresting effect of the SDF.

Design of Wide Band VHF Microstrip Tunable Band-Pass Filters (광대역 VHF 마이크로스트립 가변대역통과 여파기의 설계)

  • 박병호;정용채;윤상원;장익수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.10
    • /
    • pp.24-28
    • /
    • 1992
  • A new design method of microstrip wide band VHF tunable bandpass filters using varacter diodes is presented. In the proposed filter both the input and output ports are coupled through capacitors, and an open micro-strip line is inserted between the coupled line in order to obtain the desired degree of coupling. The optimized filter responseses for the frequency range of 220-404MHz by TOUCH-STONE are compared with the measured ones.

  • PDF

Evaluation of Composite Material Damage (복합재료의 내부손상 평가)

  • 이재준;김태우;김찬묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.689-692
    • /
    • 2002
  • Composite materials, when damaged under thermal or mechanical loadings, show property changes. Among many mechanical properties of composite materials. the stiffness tend to be reduced due to micro-cracking, debonding, or delamination caused by external loadings. This research presents results regarding the detecting technique of internal damages within composite that experienced low-velocity impacts. Post-damage evaluations were made experimentally using flexural and compression loadings. Preliminary finite element analysis was made and compared with analytical solutions. The experimental results to determine the degree of damage will be compared with finite element results.

  • PDF

Effect of microstructure on mechanical properties in dual phase steel (복합조직강의 기계적 특성에 미치는 미시조직인자의 영향)

  • 김정규;유승원
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-84
    • /
    • 1987
  • A study has been made to clarify the microstructural effect on static tensile properties of the dual phase steel, in which the martensitic phase encapsulated islands of ferritic phase. The main results are as follows: Yield strength is associated with the degree of plastic constraint factor and tensile strength increases with increasing of strain hardening exponent. Also, the variation of ductility is dependent upon the amount of micro-brittle facets.

  • PDF

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

Damage Evaluation on the Concrete Using Acoustic Emission (음향방출(AE)을 이용한 콘크리트의 손상도 평가)

  • 이웅종;조홍동;이종열;한상훈
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.750-758
    • /
    • 2002
  • Concrete is deformed by load and subjected to micro damage under allowable deformation because of non-homogeneous property. When micro damage is accumulated, it is cracked and finally fractured. Characterization of AE can be demonstrated the micro damage which it is not discovered from visual observation, and it become known to an advantage that was clearly discriminated from the existing NDT method. This study was carried out the analysis and evaluation of concrete damage by acoustic emission technique. As a results of damage analysis, it was found out that the more concrete strength has increased, the more concrete has subjected to micro damage at lower stress ratio for chylinder specimen, and this is possible only AE method which could be described the brittle properties. Also it was revealed that the kaiser effect and felicity effect were existed in reinforced concrete bending specimens and it is found out that the onset of interface debonding between concrete and steel could be conformed in comparison with felicity ratio, AE activity and load history. From the results of this study, it was conformed that the deteriorative degree of reinforced concrete structure should be evaluated using felicity ratios.

The relationship between 3D bone architectural parameters and elastic moduli of three orthogonal directions predicted from finite elements analysis (돼지 하악 과두의 해면골에서 유한요소분석법으로 예측한 방향에 따른 탄성율과 3차원 골 미세지표 간의 상관관계)

  • Park, Kwan-Soo;Lee, Sam-Sun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.38 no.2
    • /
    • pp.81-87
    • /
    • 2008
  • Purpose: To investigate the relationship between 3D bone architectural parameters and direction-related elastic moduli of cancellous bone of mandibular condyle. Materials and Methods: Two micro-pigs (Micro-$pig^R$, PWG Genetics Korea) were used. Each pig was about 12 months old and weighing around 44 kg. 31 cylindrical bone specimen were obtained from cancellous bone of condyles for 3D analysis and measured by micro-computed tomography. Six parameters were trabecular thickness (Tb. Th), bone specific surface (BS/BV), percent bone volume (BV/TV), structure model index (SMI), degree of anisotropy (DA) and 3-dimensional fractal dimension (3DFD). Elastic moduli of three orthogonal directions (superior-inferior (SI), medial-lateral (ML), andterior-posterior (AP) direction) were calculated through finite element analysis. Results: Elastic modulus of superior-inferior direction was higher than those of other directions. Elastic moduli of 3 orthogonal directions showed different correlation with 3D architectural parameters. Elastic moduli of SI and ML directions showed significant strong to moderate correlation with BV/TV, SMI and 3DFD. Conclusion: Elastic modulus of cancellous bone of pig mandibular condyle was highest in the SI direction and it was supposed that the change into plate-like structure of trabeculae was mainly affected by increase of trabeculae of SI and ML directions.

  • PDF

The three-dimensional microstructure of trabecular bone: Analysis of site-specific variation in the human jaw bone

  • Kim, Jo-Eun;Shin, Jae-Myung;Oh, Sung-Ook;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul;Huh, Kyung-Hoe
    • Imaging Science in Dentistry
    • /
    • v.43 no.4
    • /
    • pp.227-233
    • /
    • 2013
  • Purpose: This study was performed to analyze human maxillary and mandibular trabecular bone using the data acquired from micro-computed tomography (micro-CT), and to characterize the site-specific microstructures of trabeculae. Materials and Methods: Sixty-nine cylindrical bone specimens were prepared from the mandible and maxilla. They were divided into 5 groups by region: the anterior maxilla, posterior maxilla, anterior mandible, posterior mandible, and mandibular condyle. After the specimens were scanned using a micro-CT system, three-dimensional microstructural parameters such as the percent bone volume, bone specific surface, trabecular thickness, trabecular separation, trabecular number, structure model index, and degrees of anisotropy were analyzed. Results: Among the regions other than the condylar area, the anterior mandibular region showed the highest trabecular thickness and the lowest value for the bone specific surface. On the other hand, the posterior maxilla region showed the lowest trabecular thickness and the highest value for the bone specific surface. The degree of anisotropy was lowest at the anterior mandible. The condyle showed thinner trabeculae with a more anisotropic arrangement than the other mandibular regions. Conclusion: There were microstructural differences between the regions of the maxilla and mandible. These results suggested that different mechanisms of external force might exist at each site.

Synthesis and Surface Properties of Hierarchical SiO2 Coating Layers by Forming Au Nanoparticles (금 나노입자 형성을 이용한 계층구조 SiO2 코팅층의 제조 및 표면 특성)

  • Kim, Ji Yeong;Kim, Eun-Kyeong;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • Superhydrophobic $SiO_2$ layers with a micro-nano hierarchical surface structure were prepared. $SiO_2$ layers deposited via an electrospray method combined with a sol-gel chemical route were rough on the microscale. Au particles were decorated on the surface of the microscale-rough $SiO_2$ layers by use of the photo-reduction process with different intensities ($0.11-1.9mW/cm^2$) and illumination times (60-240 sec) of ultraviolet light. With the aid of nanoscale Au nanoparticles, this consequently resulted in a micro-nano hierarchical surface structure. Subsequent fluorination treatment with a solution containing trichloro(1H,2H,2H,2H-perfluorooctyl)silane fluorinated the hierarchical $SiO_2$ layers. The change in surface roughness factor was in good agreement with that observed for the water contact angle, where the surface roughness factor developed as a measure needed to evaluate the degree of surface roughness. The resulting $SiO_2$ layers revealed excellent repellency toward various liquid droplets with different surface tensions ranging from 46 to 72.3 mN/m. Especially, the micro-nano hierarchical surface created at an illumination intensity of $0.11mW/cm^2$ and illumination time of 60 sec showed the largest water contact angle of $170^{\circ}$. Based on the Cassie-Baxter and Young-Dupre equations, the surface fraction and work of adhesion for the micronano hierarchical $SiO_2$ layers were evaluated. The work of adhesion was estimated to be less than $3{\times}10^{-3}N/m$ for all the liquid droplets. This exceptionally small work of adhesion is likely to be responsible for the strong repellency of the liquids to the micro-nano hierarchical $SiO_2$ layers.

Suggestion of the morphological characteristic parameters according to the Lee's physical constitution theory using X-ray computed tomography (X선 CT화상을 이용한 사상체질의 형태학적 특징 파라메타의 제안)

  • Jo, Bong-Kwan;Bae, Jong-Il;Ko, Byung-Hee;Saito, Masao
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.13-16
    • /
    • 1993
  • In this paper the morphological characteristic parameters according to the Lee's physical constitution theory are suggested using the X-ray computed tomography. The Lee's physical constitution theory is classify into 4 physical constitutional types by the relative degree of visceral function: those are macro-negative(strong liver- weak lung), micro-negative(strong kidney- weak spleen), micro-positive(strong spleen- weak kidney) and macro-positive(string lung- weak liver). The morphological characteristic parameters are the following. The AA-line is the distance between Rt. & Lt. acupuncture point keug-cheun. The BB-line is the length of lung. The CC-line is the longest width of thorax. The DD-line is the vertical distance between the CC-line and the EE-line. The EE-line is the distance between the Rt. and Lt. anterior superior iliac spines. As the results macro-negative(strong liver-weak lung) has the longest CC-line and the short BB-line. Micro-negative(strong kidney-weak spleen) has the longest EE-line and the short CC-line. Micro-positive(strong spleen-weak kidney) has the longest DD-line and the short BB-line. And macro-positive(strong lung-weak kidney) has the longest BB-line and the short EE-line.

  • PDF