• Title/Summary/Keyword: Micro Cutting

Search Result 376, Processing Time 0.035 seconds

Development of Excitation Table for 2-dimensional Vibrational Micro Cutting (2차원 진동 미세가공을 위한 가진테이블 개발)

  • Kim, Gi-Dae;Lee, Kang-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.62-67
    • /
    • 2012
  • To realize 2-dimensional vibrational micro cutting in milling and drilling, etc. where the tools rotate, it could be a promising way to vibrate a workpiece instead of a rotating tool itself. In this study, an excitation work-table was developed using two piezoelectric materials orthogonally arranged. The trochoidal trajectory of a cutting tool which is necessary for 2D vibrational cutting is enabled in the excitation condition of higher excitation frequency and larger amplitude of vibration and the cutting condition of smaller diameter of cutting tool and lower spindle speed. The various trochoidal trajectories of a cutting tool could be generated in the excitation work-table by adjusting the input voltages to two piezoelectric materials and the phase between the two voltages and the trajectories could be readily used for the 2D vibrational micro cutting.

Machining Characteristics of Cemented Carbides in Micro Cutting within SEM

  • Heo, Sung-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.35-42
    • /
    • 2004
  • This research describes that the cutting characteristics and tool wear behavior in the micro cutting of three kinds of wear resistant cemented carbides (WC-Co; V40, V50 and V60) using PCD (Poly Crystalline Diamond) and PCBN (Poly crystalline Cubic Boron Nitride) cutting tools by use of the SEM (Scanning Electron Microscope) direct observation method. The purpose of this research is to present reasonable cutting conditions from the viewpoint of high efficient cutting refer to a precise finished surface and tool wear. Summary of the results is as follows: (1) The cutting forces tend to increase as the increase of the weight percentage of WC particles, and the thrust forces was larger than the principal forces in the cutting of WC-Co. These phenomena were different from the ordinary cutting such as cutting of steel or cast iron. (2) The cutting speed hardly influenced the thrust force, because of the frictional force between the cutting tool edge and small WC particles at low cutting speed region such as 2$\mu\textrm{m}$/s. It seemed that the thrust cutting force occurred by the contact between the flank face and work material near the cutting edge. (3) The wear mechanism for PCD tools is abrasion by hard WC particles of the work materials, which leads diamond grain to be detached from the bond. (4) From the SEM direct observation in cutting the WC-Co, it seems that WC particles are broken and come into contact with the tool edge directly. This causes tool wear, resulting in severe tool damage. (5) In the orthogonal micro cutting of WC-Co, the tool wear in the flank face was formed bigger than that in the rake face on orthogonal micro cutting. And the machining surface integrity on the side of the cutting tool with a negative rake angle was better than that with a positive one, as well as burr in the case of using the cutting tool with a negative rake angle was formed very little compared to the that with a positive one.

Stability Analysis of a Micro Stage for Micro Cutting Machine with Various Hinge Type and Material Transformation (초정밀 가공기용 마이크로 스테이지의 힌지 형상과 재질 변화에 따른 안정성 해석)

  • Kim, Jae-Yeol;Kwak, Yi-Gu;Yoo, Sin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.233-240
    • /
    • 2003
  • Recently, the world are preparing for new revolution, called as If (Information Technology), NT (Nano-Technology), and BT (Bio-Technology). NT can be applied to various fields such as semiconductor-micro technology. Ultra precision processing is required for NT in the field of mechanical engineering. Recently, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts. Therefore, in this paper, stability of ultra precision cutting unit is investigated, this unit is the kernel unit in ultra precision processing machine. According to alteration of shape and material about hinge, stability investigation is performed. In this paper, hinge shapes of micro stage in UPCU(Ultra Precision Cutting Unit) are designed as two types, where, hinge shapes are composed of round and rectangularity. Elasticity and strength are analyzed about micro stage, according to hinge shapes, by FE analysis. Micro stage in ultra precision processing machine has to keep hinge shape under cutting condition with 3-component force (cutting component, axial component, radial component) and to reduce modification against cutting force. Then we investigated its elasticity and its strength against these conditions. Material of micro stage is generally used to duralumin with small thermal deformation. But, stability of micro stage is investigated, according to elasticity and strength due to various materials, by FE analysis. Where, Used materials are composed of aluminum of low strength and cooper of medium strength and spring steel of high strength. Through this stability investigation, trial and error is reduced in design and manufacture, at the same time, we are accumulated foundation data for unit control.

Chip Formation of WC-Co on Micro-cutting in SEM (SEM내 미소절삭에 의한 초경합금재의 칩 생성 기구)

  • 허성중;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.604-607
    • /
    • 2003
  • This study investigates the micro-cutting of cemented carbides using PCD(polycrystalline diamond) and PCBN(polycrystalline cubic boron nitride) cutting tools are performed with SEM direct observation method. The purpose of this study is to make clear the cutting mechanism of cemented carbides and the fracture of WC particles at the plastic deformation zone in orthogonal micro-cutting. And also to achieve systematic understanding, the effect of machining parameter on chip formation and machined surface was investigated, including cutting speed. depth of cut and various tool rake angle.

  • PDF

A study on the effect of cutting parameters of micro metal cutting mechanism using finite element method (유한유쇼법을 이용한 미소절삭기구의 절삭인자 규명에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.206-215
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting, especially micro metal cutting. This paper introduces some effects, such as constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angle and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool. Under the usual plane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and tool rake angles. In this analysis, cutting speed, cutting depth set to 8m/sec, 0.02mm, respectively. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

Modeling of Cutting Parameters and Optimal Process Design in Micro End-milling Processes (마이크로 엔드밀링 공정의 절삭계수 모델링 및 최적 공정설계)

  • Lee, Kwang-Jo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.261-269
    • /
    • 2009
  • Micro end-milling process is applied to fabricate precision mechanical parts cost-effectively. It is a complex and time-consuming job to select optimal process conditions with high productivity and quality. To improve the productivity and quality of precision mechanical parts, micro end-mill wear and cutting force characteristics should be studied carefully. In this paper, high speed machining experiments are studied to construct the optimum process design as well as the mathematical modeling of tool wear and cutting force related to cutting parameters in micro ball end-milling processes. Cutting force and wear characteristics under various cutting conditions are investigated through the condition monitoring system and the design of experiment. In order to construct the cutting database, mathematical models for the flank wear and cutting force gradient are derived from the response surface method. Optimal milling conditions are extracted from the developed experimental models.

  • PDF

Fabrication of Micro/nanoscale Cutting Tool Geometry of Single Crystal Diamond Tool by Focused Ion Beam (집속이온빔(Focused Ion Beam)에 의한 단결정 다이아몬드 공구의 마이크로/나노스케일 절삭공구 형상 제작)

  • Baek, Seung Yub;Jang, Sung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.207-213
    • /
    • 2014
  • A study was carried out to fabricate the cutting tool geometry with micro/nanoscale on the single crystal diamond tool by using the FIB. The FIB technique is an ideal tool for TEM sample preparation that allows for the fabrication of electron-transparent foils. The FIB is appropriate techniques to sample and subsequently define the chemical composition and the structural state of mineral inclusion on the micro/nanoscale. The combination of FIB with a SEM allows for 3D information to be obtained from samples including 3D imaging. Cutting strategies were demonstrated to improve the performance of cutting tool geometry and to generate high aspect ratio micro cutting tool. A finely focused beam of 30keV Ga+ ions was used to mill cutting tool shapes for various micro patterns. Therefore FIB sputtering is used to shape a variety of cutting tools with dimensions in the $1-5{\mu}m$ range and cutting edge radii of curvature of under 50nm.

Development of Micro Pattern Cutting Simulation Software (미세패턴 가공 시뮬레이션 기술 개발)

  • Lee, Jong-Min;Le, Duy;Kim, Su-Jin;Lee, Seok-Woo;Je, Tae-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.218-223
    • /
    • 2009
  • The micro pattern machining on the surface of wide mold is not easy to be simulated by conventional software. In this paper, a software is developed for micro pattern cutting simulation. The 3d geometry of v-groove, rectangular groove, pyramid and pillar patterns are visualized by C++ and OpenGL library. The micro cutting force is also simulated for each pattern.

Diamond micro-cutting of the difficult -to -cut materials using Electrolysis (전기분해를 이용한 난삭재의 다이아몬드 미세가공)

  • 손성민;손민기;임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.951-954
    • /
    • 2000
  • This paper presents a new cutting method, i.e. diamond cutting, aided by electrolysis, in order to cut ferrous materials with diamond tools. Diamond cutting is widely applied in manufacturing ultraprecision parts such as magnetic disk, polygon mirror, spherical/non-spherical mirror and copier drum, etc. because of the diamond tool edge sharpness. In general, however, diamond cutting cannot be applied to cutting steels, because diamond tools wear excessively in cutting iron based materials like steel due to their high chemical interaction with iron in high temperature. In order to suppress the diffusion of carbon from the diamond tool and to reduce increase of cutting force due to size effect, we attempt to change chemically the compositions of iron based materials using electrolysis in a limited part which will be soon cut. Through experiments under several micro-machining and electrolysis conditions, cutting using electrolysis, compared to conventional cutting, was found to result in a great decrease of the cutting force, a better surface and much less wear tool.

  • PDF

Micro Groove Cutting of Glass Using Abrasive Jet Machining (Abrsive Jet Machining을 이용한 유리의 미세 홈 가공)

  • 최종순;박경호;박동삼
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.963-966
    • /
    • 2000
  • Abrasive jet machining(AJM) process is similar to the sand blasting, and effectively removes hard and brittle materials. AJM has applied to rough working such as deburring and rough finishing. As the needs for machining of ceramics, semiconductor, electronic devices and LCD are increasing, micro AJM was developed, and became the inevitable technique to micromachining. This paper describes the performance of the micro AJM in micro groove cutting of glass. Diameter of hole and width of line in this groove cutting is 80${\mu}{\textrm}{m}$. Experimental results showed good performance in micro groove cutting in glass, but the size of machined groove was increased about 2~4${\mu}{\textrm}{m}$. therefore, this micro AJM could be effectively applied to the micro machining of semiconductor, electronic devices and LCD parts.

  • PDF