• Title/Summary/Keyword: Micro Cutting

Search Result 376, Processing Time 0.033 seconds

Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features (초정밀 대면적 미세 형상 가공기의 구조 특성 해석)

  • Kim, Seok-Il;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1469-1474
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.

  • PDF

A Study on the Micro Hole Drilling Characteristics of $Si_3N_4$-BN Based Machinable Ceramics ($Si_3N_4$-BN계 가공성 세라믹스의 마이크로 홀 가공특성에 관한 연구)

  • 김동우;조명우;조원승;이응숙;이재형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.48-56
    • /
    • 2004
  • Ceramics are very difficult-to-cut materials because of its high strength and hardness. Their machining mechanism is characterized by cracking and brittle fracture. In this paper, to give good machinability to the ceramics, h-BN powders are added to $Si_3N_4$, by volume of 20, 25 and 30%. And the machinability of the produced ceramics is tested using micro drilling system. Through required experimental works, it is shown that the micro drilling machinability is varied along with the volumetric percentage of h-BN powders. Also, it is verified that the obtained results can be used to develop new machinable ceramics of good material properties and machinability.

Evaluation of Machining Characteristics of the Micro Grooving for the Mold of PDP Barrier Rib (PDP 격벽 금형 미세 홈 가공 특성 평가)

  • 이은상;김남훈;이득우;김남경;김덕환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.23-28
    • /
    • 2003
  • This paper describes the machining characteristics of a developed micro grooving machine. Experiments have been conducted on the various grooving condition such as spindle revolution speed, feed rate and depth of groove. V and U-shaped blade tool and STD11 workpiece was used in this study. To evaluate the developed micro grooving machine, AE signal obtained from each experimental condition was analyzed, and cutting stability was compared with the surface state. As a result this study presented the process to optimize grooving condition and possibility of application of AE technique in groove machining.

The improvement of micro-drilling method of SUS430 material (SUS430 소재의 미세홀 가공시 가공방법 개선)

  • Lee K.Y.;Kim H.M.;Park S.S.;Park H.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.237-238
    • /
    • 2006
  • Micro drilling is a very important machining method to produce precise parts or small molds. General macro-program for drilling is a non-efficient method because of many movements to safety height. In this research new macro-program was suggested to raise machining-efficiency. New micro-drilling method caused the much reduction of machining time and the same tool life.

  • PDF

A Study on The Energy Conservation System in House for reducing the Environmental Load (환경부하 저감을 위한 주택의 에너지절약 시스템에 관한 연구 -소형코제너레이션시스템과 태양광발전시스템을 적용한 성능평가-)

  • 정진현
    • Journal of the Korean housing association
    • /
    • v.11 no.1
    • /
    • pp.159-169
    • /
    • 2000
  • This study was examined the energy conservation and the environmental value through the computer simulation employing the micro cogeneration system and the photovoltaic power generation system in house. The results of this study were as follows:1. In case of the micro cogeneration system. With the conditions of 'the electric produced by the micro cogeneration system was not sold to the electric power company', 'control quantity of commercial power supply was 10%' , 'operating time was 6 hour', 'minimum load rate of generator was 50%', and 'having a storage tank', the micro cogeneration system was superior compare to the comparative system in 2.4% of the energy conservation and 4.18% of the environmental value. 2. In case of the photovoltaic power generation system. 1) The 66.9% of total generated electric power from the photovoltaic power system was sold to the electric power company. That is, it could help to preserve the electric power from commercial power supply.2) There is a possibility of cutting the fair rate of electric power.

  • PDF

Analysis of Characteristic Evaluation of Microdrilling for the Cemented Carbides Materials (초경합금 소재 마이크로드릴의 가공특성 평가)

  • 김건회
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.52-59
    • /
    • 2002
  • Resently, reduction of industrial products in size and weight has increased by the application of micro-drill for gadgets of high precision and gave rise to a great interest in a micro-drilling. Due to the lack of tool stiffness and the chip packing, micro-drilling requires not only the robust tool structure which has not affected by the vibration, but also the effective drilling methods designed to prevent tool fracture from cutting troubles. Firstly, this paper presents a optimum characteristic evaluation method of 0.15mm microdrill in consideration of new manufacturing processes for improving the product rate and extend the tool life, and secondly suggest between microdrilling characteristic properties of tool md evaluation of workpiece quality through experiment.

A Study on the Ultrasonic Micro-machining and Measurement System (초음파 초정밀 가공 및 측정시스템에 대한 연구)

  • Ju, Jong-Nam;Han, Dong-Cheol;Park, Hui-Jae;Park, Sang-Sin;Je, Seong-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.133-140
    • /
    • 2002
  • Ultrasonic Machining (USM) is widely used in cutting of non-conductive, brittle workpiece materials such as engineering ceramics. However, USM has a limitation in its application to micro machining because problems are occurred in attaching micro tools to the machine and maintaining high precision. Therefore Micro Ultrasonic Machining (MUSM) with WEDM is proposed in this research. The experiments are produced as the change of shaft diameter and abrasive size.

Shield Wire Stripping of Micro Coaxial Cable for Medical Device Using Laser (레이저를 이용한 의료기기용 미세 동축케이블의 실드선 탈피)

  • Lee, Jeong-Wan;Kim, Jung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.64-71
    • /
    • 2009
  • Recently as ultrasonic medical devices are gradually developed, many of those require smaller and more precision coaxial cables in the probe. So, the use of micro coaxial cable becomes an efficient solution for ultrasonic machine. However, there are many difficulties in stripping micro coaxial cable by traditional mechanical process. In this paper we use the Nd:YAG laser for the efficient striping of conduct wire of cable. Through some experiments, we found that there is a new possibility in the proposed method. Also, we propose a pre-process of the cable before stripping in order to enhance the performance.

A Study on the Truing of Diamond Wheel for Micro V-shaped Groove Grinding (마이크로 V홈 연삭가공을 위한 다이아몬드숫돌의 V형상 트루잉에 관한 연구)

  • Lee, Joo-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.27-33
    • /
    • 2005
  • This study deals with the truing of diamond wheel fur the manufacture of micro v-shaped grooves with fine sharp edges in the grinding. Fine micro v-shaped grooves are key components to fabricate LGP(light guide plate), optical fiber connector and so on. Conventional v-shaped groove methods such as etching and lithography are difficult to make grooves with accuracy and cutting by lathe is difficult to select target materials. Therefore, as a preliminary stage to developing the grinding technology that will be expected fabrications for micro 3-dimensional structure of high effectivity and accuracy and freed up the restrictions of machinability to the materials for micro v-shaped grooves, truing is carried out with resin bond diamond wheel and electroforming diamond wheel using a cup-type truer. From the experimental results, it is found that the effects according to working direction of the cup-type truer and the restrainable methods of plastic deformation that is generated at wheel edge are examined. As a result, fine micro v-shaped diamond wheel was obtained, which are applicable to micro grinding for optical devices.

Computational Analysis of 355 nm UV Laser Single-Pulsed Machining of Copper Material Considering the Strain Rate Effect (변형률 속도 효과를 고려한 355 nm UV 레이저 구리재질의 싱글 펄스 전산해석)

  • Lee, Jung-Han;Oh, Jae Yong;Park, Sang Hu;Shin, Bo Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.56-61
    • /
    • 2010
  • Recently, UV pulse laser is widely used in micro machining of the research, development and industry field of IT, NT and BT products because the laser short wavelength provides not only micro drilling, micro cutting and micro grooving which has a very fine line width, but also high absorption coefficient which allows a lot of type of materials to be machined more easily. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, the commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computitional simulation of the UV laser micro machining behavior for thin copper material in this paper. A finite element model considering high strain rate effect is especially suggested to investigate the micro phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. From these computational results, some of dynamic deformation behaviors such as dent deformation shapes, strains and stresses distributions were observed and compared with previous experimental works. These will help us to understand micro interaction between UV laser beam and material.