• Title/Summary/Keyword: Micro Channel Fabrication

Search Result 83, Processing Time 0.028 seconds

A study on the process optimization of injection molding for replicability enhancement of micro channel (미세채널 전사성 향상을 위한 사출성형 공정최적화 기초연구)

  • Go, Young-Bae;Kim, Jong-Sun;Yu, Jae-Won;Min, In-Gi;Kim, Jong-Duck;Yoon, Kyung-Hwan;Hwang, Cheul-Jin
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Micro channel is to fabricate desired pattern on the polymer substrate by pressing the patterned mold against the substrate which is heated above the glass transition temperature, and it is a high throughput fabrication method for bio chip, optical microstructure, etc. due to the simultaneous large area patterning. However, the bad pattern fidelity in large area patterning is one of the obstacles to applying the hot embossing technology for mass production. In the present study, stamper of cross channel with width $100{\mu}m$ and height $50{\mu}m$ was manufactured using UV-LiGA process. Micro channel was manufactured using stamper manufactured in this study. Also replicability appliance was evaluated for micro channel and factors affected replicability were investigated using Taguchi method.

  • PDF

A Study on Fabrication of Fluidic Devices using Stereolithography Technology (Stereolithography 기술을 이용한 유체소자 제작에 관한 연구)

  • Lee Young Tae;Bae Yong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.188-195
    • /
    • 2004
  • In this paper, we fabricated fluidic devices like micro-channel, pump, mixer and particular gas separator with the technology of stereolithouaphy using RP(rapid-prototyping). The fabricated fluidic devices are expected to be applied to develop Lab-on-a chip type liquid analyzer. Stereolithography technology seems effective for fabricating MEMS(Micro Electro Mechanical System) with complicated structure because it makes three dimensional fabrication possible but, exclusive devices are needed to be developed fur fabricating even more microscopic MEMS structure.

Fabrication of plastic CE (capillary electrophoresis) microchip by hot embossing process (핫 엠보싱 공정을 이용한 플라스틱 CE(capillary electrophoresis) 마이크로 칩의 제작)

  • Cha Nam-Goo;Park Chang-Hwa;Lim Hyun-Woo;Park Jin-Goo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1140-1144
    • /
    • 2005
  • A plastic-based CE (capillary electrophoresis) microchip was fabricated by hot embossing process. A Si mold was made by wet etching process and a PMMA wafer was cut off from 1mm thick PMMA sheet. A micro-channel structure on PMMA substrate was produced by hot embossing process using the Si mold and the PMMA wafer. A vacuum assisted thermal bonding procedure was employed to seal an imprinted PMMA wafer and a blank PMMA wafer. The results of microscopic cross sectional images showed dimensions of channels were well preserved during thermal bonding process. In our procedure, the deformation amount of bonding process was below 1%. The entire fabrication process may be very useful for plastic based microchip systems.

  • PDF

Fabrication of a Micro Electromagnetic Flow Sensor for Micro Flow Rate Measurement (미소 유량 측정을 위한 마이크로 전자 유량 센서의 제작)

  • Yoon, Hyeun-Joong;Kim, Soon-Young;Yang, Sang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.334-340
    • /
    • 2000
  • This paper presents the fabrication of a micro electromagnetic flow sensor for the liquid flow rate measurement. The micro electromagnetic flow sensor has some advantages such as a simple structure, no heat generation, a rapid response and no pressure loss. The principle of the micro electromagnetic flow sensor is based on Faraday's law. If conductive fluid passes through a magnetic field, the electromotive force is generated and detected by two electrodes on the wall of the flow channel. The flow sensor consists of two permanent magnets and a silicon flow channel with two electrodes. The dimension of the flow sensor is $9\;mm\;{\times}\;9\;mm\;{\times}\;1\;mm$. The micro flow channel is mainly fabricated by anisotropic etching of two silicon wafers, and the detection electrodes are fabricated by metal evaporation process. The characteristic of the fabricated flow sensor is obtained experimentally. When the flow rates of water with the conductance of $100-200\;{\mu}S/cm$ are 9.1 ml/min and 62 ml/min, the generated electromotive forces are $261\;{\mu}V$ and 7.3 mV, respectively.

  • PDF

Development of Backflow prevented Micropump (역류방지형 유리계 마이크로 펌프 개발)

  • Choi J. P.;Cho K. C.;Kim H. Y.;Kim B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.229-232
    • /
    • 2005
  • This paper presents the design and fabrication of backflow prevented Micropump using the metal membrane. The Micropump is consisted of the lower plate, metal membrane, upper plate and the piezoelectric-element. The lower plate includes the micro channel and the inlet, outlet of the Micropump. The upper plate includes the micro channel and connects the piezoelectric-element. These plate are fabricated on the Pyrex glass wafer by sandblasting process. The metal membrane does roll of check valve that is prevented backflow of the Micropump. The metal membrane is fabricated on the stainless steel by laser machining. Piezoelectric-element is actuated the Micropump and controlled flowing of fluid. The Micropump is fabricated by bonding process of these multi-layer.

  • PDF

Microfilter Chip Fabrication for Bead-Based Immunoassay (비드를 이용한 면역분석용 마이크로필터 칩의 제작)

  • Lee, Seung-Woo;Ahn, Yoo-Min;Chai, Young-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1429-1434
    • /
    • 2004
  • Immunoassay is one of the important analytical methods for clinical diagnoses and biochemical studies, but needs a long time, troublesome procedures and expensive reagents. In this study, therefore, we propose the micro filter chip with microbeads for immunoassay, which has pillar structures. The advantage of the proposed micro filter chip is to use simple fabrication process and cheap materials. The mold was made by the photolithography technique with Si wafer and negative photoresist SU-8. The replica was made of PDMS, bonded on the pyrex glass. The micro filter chip consists of inlet channel, filter chamber and outlet channel. HBV (Hepatitius B virus) monoclonal antibody (Ag1) labeled with biotin were immobilized onto streptavidin coated beads of 30∼50 $\mu$m size. Fluorescein isothiocyanate (FITC)-labeled HBV monoclonal antibody (Ag8) was used to detect HBsAg (Hebatitis B virus surface Antigen), and fluorescence intensity was monitored by epi-fluorescence microscope. In this study, the immune response of less than 30 min was obtained with with the use of 100 $m\ell$ of sample.

Fabrication and Characterization of Micro parts by Mechanical Micro Machining: Precision and Cost Estimation (기계식 마이크로 머시닝을 이용한 마이크로 형상의 특성과 비용 평가)

  • Kang, Hyuk-Jin;Choi, Woon-Yong;Ahn, Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.47-56
    • /
    • 2007
  • Recently, demands on mechanical micro machining technology have been increased in manufacturing of micro-scale precision shapes and parts. The main purpose of this research is to verify the accuracy and cost efficiency of the mechanical micro machining. In order to measure the precision and feasibility of mechanical micro machining, various micro features were machined. Aluminum molds were machined by a 3-axis micro stage in order to fabricate microchips with $200{\mu}m$ wide channel for capillary electrophoresis, then the same geometry of microchip was made by injection molding. To evaluate the cost efficiency of various micro manufacturing processes, cost estimation for mechanical micro machining was conducted, and actual costs of microchips fabricated by mechanical micro machining, injection molding, and MEMS (Micro electro mechanical system) were compared.

Micro Mold Fabrication and the Micro Patterning by RTP Process (Micro Mold 제작 및 RTP 공정에 의한 미세 패턴의 성형)

  • Kim H. K.;Ko Y. B.;Kang J. J.;Rhim S. H.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.294-297
    • /
    • 2004
  • RTP(Rapid Thermal Pressing) is to fabricate desired pattern on polymer substrate by pressing patterned mold against the substrate heated around glass transition temperature. For a successful RTP process, the whole process including heating, molding, cooling and demolding should be conducted 'rapidly' as possible. As the RTP process is effective in replicating patterns on flat large surface without causing shape distortion after cooling, it is being widely used for fabricating various micro/bio application components, especially with channel-type microstructures on surface. This investigation finally aims to develop a RTP process machine for mass-producing micro/bio application components. As a first step for that purpose, we intended to examine the technological difficulties for realizing mass production by RTP process. Therefore, in the current paper, 4 kinds of RTP machines were examined and then the RTP process was conducted experimentally for PMMA film by using one of the machines, HEX 03. The micro-patterned molds used for RTP experiment was fabricated from silicon wafer by semi-conduct process. The replicated micro patterns on PMMA films were examined using SEM and the causes of defect observed in the replicated patterns were discussed.

  • PDF

Fabrication of Micro Structure Using Photo Polymer Mask and Micro Abrasive Jet Machining (Photo Polymer 마스크와 미세입자분사가공을 이용한 미세구조물 제작)

  • Ko T.J.;Park D.J.;Lee I.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1175-1178
    • /
    • 2005
  • Brittle materials, especially single-crystal silicon wafer, are widely used for sensors, IC industry, and MEMS applications. e general machining process of crack easy materials is by chemical agents, but it is hazardous and time consuming. Also, it is difficult to get high aspect ratio micro structure. As an alternative tool, an AJM(Abrasive jet machining) is promising method in terms of high aspect ratio and production cost. In this study, to get more precise detail compared to general AJM, photo polymer mask, SU-8, used in photolithography was applied in AJM. Process parameters such as abrasive diameter, air pressure, nozzle diameter, flow rate of abrasive in AJM and a variety of conditions in spin coating were decided. Finally, micro channel and mixer was fabricated to see the efficiency of the AJM with photo polymer mask.

  • PDF