• Title/Summary/Keyword: Micro Cement

Search Result 322, Processing Time 0.027 seconds

Comparison of Microhardness and Compressive Strength of Alkasite and Conventional Restorative Materials (Alkasite와 기존의 수복 재료의 압축강도 및 미세경도 비교)

  • Lee, Kunho;Kim, Jongsoo;Shin, Jisun;Han, Miran
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.3
    • /
    • pp.320-326
    • /
    • 2020
  • The aim of this study was to compare compressive strength and microhardness of recently introduced alkasite restorative materials with glass ionomer cement and flowable composite resin. For each material, 20 samples were prepared respectively for compressive strength and Vickers microhardness test. The compressive strength was measured with universal testing machine at crosshead speed of 1 mm/min. And microhardness was measured using Vickers Micro hardness testing machine under 500 g load and 10 seconds dwelling time at 1 hour, 1 day, 7 days, 14 days, 21 days and 35 days. The compressive strength was highest in composite resin, followed by alkasite, and glass ionomer cement. In microhardness test, composite resin, which had no change throughout experimental periods, showed highest microhardness in 1 hour, 1 day, and 7 days measurement. The glass ionomer cement showed increase in microhardness for 7 days and no difference was found with composite resin after 14 days measurement. For alkasite, maximum microhardness was measured on 14 days, but showed gradual decrease.

A GINGIVAL MARGINAL FIT OF THE ADHESIVE CLASS II CAST GOLD INLAY (접착형 2급 주조 금 인레이의 치은변연 접합도에 관한 연구)

  • Choi, Hee-Kyung;Shin, Dong-Hoon;Hong, Chan-Ui
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.473-484
    • /
    • 1994
  • To investigate the effect of resin cement, which had been known to increase the adhesive capacity of the cast gold inlay, on the gingival marginal fit and whether the tin-planting of the beveled area affects the marginal fit, Class II cast gold inlays were made on the 25 sound molars. Control group(ZPC goup) was cemented with the ZPC by conventional method. Experimental groups were cemented with the resin cement(Super-hond & $Panavia_{EX}$) and subdivided further by the existence or nonexistence of the tin-plating of the beveled area(ST & PT groups: with plating, SNT & PNT groups: without plating). So, each group was consisted of 5 teeth and the gingival margin of each specimen was mesiodistally sectioned by 3 times and the marginal and internal gap were evaluated by the Stereo Microscope (${\times}180$) and the Scanning Electron Micrascope(${\times}5,000$) was used for examining the adhesive relationship of the resin cement to the cavity wall and to the cast gold surface. The results were as follows : 1. Marginal gap was less than internal gap in all groups. 2. ZPC and SNT(bevel without tin-plating) groups showed the least gap and gap in PNT(bevel without tin-plating) group, ST(bevel with tin-plating) group, PT(bevel with tin-plating) group showed the greater value in order in evaluation of the both internal gap and marginal gap. 3. With the exception of the relationships between ZPC and SNT groups, ST and PNT groups, relationships between any other groups showed the statistical significance in the internal gap(p<0.05). 4. In the marginal gap, all relationships between groups showed the statistical significance (p<0.05) except the relationships between ZPC and SNT groups, ST and PNT groups, ZPC and PNT groups. 5. ZPC group showed more soluble phenamena than the resin groups(ST, SNT, PT, PNT). 6. Resin cement showed the void spaces in spite of good penetration into the micro-irregularities on both the tooth surface and the cast surface. The void was shown more in PT and PNT groups than in the ST and SNT groups. 7. After the treatment of heat and desiccation for SEM specimen, resin cements were detached more easily from the tooth surface than from the cast surface.

  • PDF

Assessment of the Damage in High Performance Fiber-Reinforced Cement Composite under Compressive Loading Using Acoustic Emission (AE기법에 의한 압축력을 받는 고인성 섬유보강 시멘트 복합체의 손상 평가)

  • Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.589-597
    • /
    • 2009
  • High Performance Fiber-reinforced Cement Composite (HPFRCC) shows the multiple crack and damage tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For practical application, it is needed to investigate the fractural behavior of HPFRCC and understand the micro-mechanism of cement matrix with reinforcing fiber. This study is devoted to the investigation of the AE signals in HPFRCC under monotonic and cyclic uniaxial compressive loading, and total four series were tested. The major experimental parameters include the type and volume fraction of fiber (PE, PVA, SC), the hybrid type and loading pattern. The test results showed that the damage progress by compressive behavior of the HPFRCC is a characteristic for the hybrid fiber type and volume fraction. It is found from acoustic emission (AE) parameter value, that the second and third compressive load cycles resulted in successive decrease of the amplitude as compared with the first compressive load cycle. Also, the AE Kaiser effect existed in HPFRCC specimens up to 80% of its ultimate strength. These observations suggested that the AE Kaiser effect has good potential to be used as a new tool to monitor the loading history of HPFRCC.

A Study about The Global Trend of Neo-Grouting Technology (최신 그라우팅 기술의 세계적인 동향에 관한 연구)

  • Kim, Jin-Chun;Kim, Sang-Gyun;Yoo, Byung-Sun;Kang, Hee-Jin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.2
    • /
    • pp.25-34
    • /
    • 2014
  • This study researches on global technology trend in each of composing technology, such as grouting material, grouting equipment, and construction management technology, which grouting technology has been founded upon to improve relatively inadequate domestic grouting technology and to establish the global standard for overseas expansion in the future. As far as grouting material is concerned, while High-Penetration and High-Strength micro cement ($1.5{\mu}m$) has been developed in 2000's in Japan, JinChun Kim et al. (2014) has been developing hybrid type micro cement grouting material and examining specifications of different kinds of projects and countries to analyze the trend of grouting equipment development. The specification contains detailed requisite specification for materials, mixers, pumps, agitators, and packers and it has to satisfy the standard of different countries to win global contracts. Grouting management technology can be divided into four different generations and Scandinavian countries, such as Sweden, Norway, and Finland, Japan, and South Korea are recently doing vigorous researches on the Fourth generation which merges grouting technology with ICT.

An Experimental Study on the Microstructure Characteristics of Cementitious Composites by MIP (MIP를 통한 혼합 시멘트계 재료의 미세구조 특성에 관한 실험적 연구)

  • Kim, Tae-Sang;Jung, Sang-Hwa;Chae, Seong-Tae;Lee, Bong-Chun;Woo, Young-Je;Song, Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.533-536
    • /
    • 2008
  • Recently, in Korea, there has been an increasing number of research papers published which are to improve durability of concrete, particularly by analyzing correlation between diffusivity of chloride and porosity/pore size distribution. In these studies, such test methods as mercury intrusion porosimetry(MIP), gas adsorption or image analysis method are used to analyze the microstructure of materials while MIP is most widely used for concrete. This study analyzes the results of porosity and pore size distribution of paste and concrete adding fly ash or blast furnace slag by using MIP equipment which is widely used for determining micro-porosity structure of cementitious materials. A variation in porosity and pore size distribution at the curing day 3, 7 and 28 has been observed by using MIP equipment for cement paste 35%, 40%, 45%, 50%, 55%, 60% of W/C when using $300kg/m^3$ of cement, 35%, 45%, 55% of W/C when replaced 60% with blast-furnace slag, and 35%, 45%, 55% of W/C when replaced 30% with fly ash. For long-term water cured normal OPC concrete and mixed concrete replaced 60% with blast-furnace slag powder, micro-structure of the sample has been analyzed by using MIP equipment when W/C indicated 40%, 45%, 50% respectively and the binder varied $300kg/m^3$, $350kg/m^3$, $400kg/m^3$, and $450kg/m^3$.

  • PDF

Properties of Cement Paste Containing High Volume γ-C2S and MgO Subjected to CO2 Curing (γ-C2S 및 MgO를 다량 혼입한 시멘트 페이스트의 CO2 양생유무에 따른 특성변화)

  • Sung, Myung-Jin;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 2015
  • Carbonation of concrete causes reduction of pH and subsequently causes steel corrosion for reinforced concrete structure. However, for plain concrete structure or PC product, it can lead to a decrease in porosity, high density, improvement of concrete, shrinkage-compensation. Recently, based on this theory, research of $CO_2$ curing effect has been performed, but it was mainly focused on its effects on compressive strength using only ordinary portland cement. Researches on $CO_2$ curing effect for concrete containing $CO_2$ reactive materials such as ${\gamma}-C_2S$, MgO haven't been investigated. Therefore, this study has performed experiments under water-binder ratio 40%, and the replacement ratios of ${\gamma}-C_2S$ and MgO were 90%. Micro-chemical analysis, measurement of compressive strength according to admixtures and $CO_2$ curing were investigated. Results from this study revealed that higher strength was measured in case of $CO_2$ curing compared with none $CO_2$ curing for plain specimen indicating difference between 1.08 and 1.26 times, in case of ${\gamma}-C_2S$ 90, MgO 90 specimen, incorporating high volume replaced as much as 90%, it was proven that when applying $CO_2$ curing, higher strength which has difference between 14.56 and 45.7 times, and between 6.5 and 10.37 times was measured for each specimen compared to none $CO_2$ curing. Through micro-chemical analysis, massive amount of $CaCO_3$, $MgCO_3$ and decrease of porosity were appeared.

CNN Model for Prediction of Tensile Strength based on Pore Distribution Characteristics in Cement Paste (시멘트풀의 공극분포특성에 기반한 인장강도 예측 CNN 모델)

  • Sung-Wook Hong;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.339-346
    • /
    • 2023
  • The uncertainties of microstructural features affect the properties of materials. Numerous pores that are randomly distributed in materials make it difficult to predict the properties of the materials. The distribution of pores in cementitious materials has a great influence on their mechanical properties. Existing studies focus on analyzing the statistical relationship between pore distribution and material responses, and the correlation between them is not yet fully determined. In this study, the mechanical response of cementitious materials is predicted through an image-based data approach using a convolutional neural network (CNN), and the correlation between pore distribution and material response is analyzed. The dataset for machine learning consists of high-resolution micro-CT images and the properties (tensile strength) of cementitious materials. The microstructures are characterized, and the mechanical properties are evaluated through 2D direct tension simulations using the phase-field fracture model. The attributes of input images are analyzed to identify the spot with the greatest influence on the prediction of material response through CNN. The correlation between pore distribution characteristics and material response is analyzed by comparing the active regions during the CNN process and the pore distribution.

Effect of Fiber Volume Fractions on Flow and Uniaxial Tension Properties of 3D Printed SHCC (3D 프린팅용 SHCC의 흐름값과 1축 인장 특성에 미치는 섬유 혼입률의 영향)

  • Chang-Jin Hyun;Hyo-Jung Kim;Byung-Jae Lee;Yun-Yong Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.83-90
    • /
    • 2024
  • This study investigates the 3D printing characteristics of strain hardening cement composites (SHCC) reinforced by PVA fibers. Three SHCC mixtures with diverse fiber volume fractions (1.0% for F1.0 mixture, 1.5% for F1.5 mixture, and 1.8% for F1.8 mixture) were designed. Except for the F1.0 mixture, all mixtures met the necessary conditions for multiple micro-cracking, with higher fiber volume fractions more readily satisfying these conditions. The flow values of three SHCC mixtures were within the 3D printable range of 120~160 mm, exhibiting decreased flow values with increasing the fiber volume fractions. Observation of the printed SHCC surfaces indicated that the F1.0 mixture had a Level-3 (good) rating, while F1.5 and F1.8 were rated as Level-2 (average). Higher fiber volume fractions resulted in poorer surface quality, thus, further research needs to be performed for modulating SHCC mixture suitable for 3D printing. The uniaxial tension behavior showed that the F1.0 mixture failed at lower strain, whereas F1.5 and F1.8 exhibited higher strain performance with multiple micro-cracks occurring.

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.

Evaluation of Freeze-Thaw Damage on Concrete Using Nonlinear Ultrasound (초음파의 비선형 특성을 이용한 콘크리트 동결융해 손상 평가)

  • Choi, Ha-Jin;Kim, Ryul-Ri;Lee, Jong-Suk;Min, Ji-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.56-64
    • /
    • 2021
  • Leakage due to deterioration and damage is one of the major causes of volume change by freezing and thawing, and it leads micro-cracking and surface scaling in concrete structures. The deterioration of damaged concrete accelerates with the chloride attack. Thus, in the detailed guidelines for facility performance evaluation (2020), the quality of cover concrete and the freeze-thaw (FT) repetition cycle were newly suggested for concrete durability assessment. The quality of cover concrete should be evaluated by the rebound hammer test and the FT repetition cycle should be also considered in the deterioration environmental assessment. This study suggested the application of fast dynamic based nonlinear ultrasound method to monitor initial micro-scale damage under freezing and thawing environment. Concrete specimens were fabricated with different water-cement ratios (40%, 60%) and air contents (1.5% and 3.0%). The compressive strength, rebound number, relative dynamic modulus, and nonlinear ultrasound were measured with different FT cycles. The scanning electron microscopy was also performed to investigate the micro-scale FT damage. As a result, both the rebound number and the relative dynamic modulus had difficulty to detect early damage but the proposed method showed a potential to detect initial micro-scale damage and predict the FT resistance performance of concrete.