• 제목/요약/키워드: Micro Bubble

검색결과 196건 처리시간 0.023초

극친수/극소수 표면에서 탄산용액의 기포 발생 촉진/억제 효과 분석 연구 (Effect of Promoting/Inhibiting Bubble Generation of Carbonate Solution on Superhydrophilic/Superhydrophobic Surfaces)

  • 이정원
    • 한국기계가공학회지
    • /
    • 제21권7호
    • /
    • pp.77-83
    • /
    • 2022
  • When carbon dioxide in a liquid becomes supersaturated, carbon dioxide gas bubbles are generated in the liquid, and they ascend to the surface as they develop further. At this time, the inner wall of the cup with carbon gas attached is known as the entrapped gas cavity (EGS); once an EGS is established, it does not disappear and will continuously create carbon bubbles. This bubbling phenomenon can be activated or suppressed by changing the properties of the solid surface in contact with the carbonated liquid. In this study, the foaming of carbonated liquid is promoted or suppressed by modifying the wettability of the surface. A micro/nano surface structure is formed on the surface of an aluminum cup to produce a superhydrophilic surface, and a superhydrophobic surface similar to a lotus leaf is synthesized via fluorination. Experiment results show that the amount of carbon dioxide bubble generated differs significantly in the first few seconds depending on the surface, and that the amount of gas generated after it enters the stabilization period is the same regardless of the wettability of the cup surface.

레이저 미세 가공기술을 이용한 마이크로 엑츄에이터의 개발 (Laser Microfabrication of Micro Actuator)

  • 김광열;고상철;박현기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.932-937
    • /
    • 2002
  • The polyimide nozzle and silicon restrictor inside a thermal micro actuator have been fabricated using state of the art laser micromachining methods. Numerical models of fluid dynamics inside the actuator chamber and nozzle are presented. The models include fluid flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill through restrictor. Since high tapered nozzle and restrictor are very important parameters for overall actuator performance design, a special setup for the beam delivery system has been developed. The effects of variations of nozzle thickness, diameter, taper angles, and restrictor shapes are simulated and some results are compared with the experimental results. It is fecund that the fluid ejection through the thinner and high tapered nozzle is more steady, fast, and robust and the tapered restrictor shows more satisfying refill than the zero taper one.

  • PDF

정수기용 역삼투 폐분리막 필터의 세정 및 성능 향상 연구 (Cleaning of the Waste Reverse Osmosis Membrane Filters for the Household Water Purifier and Their Performance Enhancement Study)

  • 조영주;임지원
    • 멤브레인
    • /
    • 제27권3호
    • /
    • pp.232-239
    • /
    • 2017
  • 본 연구에서는 사용 후 폐기되는 정수기용 역삼투(Reverse Osmosis; RO)막 필터를 세정하여 새 필터의 수준으로 복원시키는 연구를 수행하였다. 화학적 세정액으로는 수산화나트륨, 중아황산나트륨, EDTA용액을 사용하였으며 마이크로버블 발생 장치와 함께 in-situ의 방법으로 세정하였다. EDTA를 0.1%의 농도로 제조한 뒤 마이크로버블과 함께 사용하여 30분 세정하였을 때 가장 좋은 결과를 나타내었다. 이때 폐 필터와 세정 후 폐필터의 성능을 비교해 보았을 때 투과도는 19.9%, 회수율은 49.5%증가하였으며 NaCl 100 mg/L 용액에 대한 염제거율은 2.3% 감소되었는데, 이는 새 필터와 동등한 수준으로 회복이 되었다. 또한 전자현미경 분석을 이용하여 막 표면의 오염물의 제거를 육안으로 확인하였다. 이로써 전량 매립 또는 소각 되어지는 정수기용 폐 RO막 필터의 세정을 통하여 재사용이 가능할 것으로 판단된다.

An Experimental Study on the Improvement of Microscopic Machinability of Glass using the Discharging Peak Control Techniques in the Electrochemical Discharge Machining Technologies

  • Chang, In-Bae;Kim, Nam-Hyeock;Kim, Byeong-Hee;Kim, Heon-Young
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.315-316
    • /
    • 2002
  • Electrochemical discharge machining is a very recent technique for non-conducting materials such as ceramics and glasses. ECDM is conducted in the NaOH solution and the cathode electrode is separated from the solution by $H_2$ gas bubble. Then the discharge is appeared and the non-conductive material is removed by spark and some chemical reactions. In the ECDM technology, the $H_2$ bubble control is the most important factor to stabilize the discharging condition. In this paper, we proposed the discharge peak monitoring/ discharging duty feedback algorithms for the discharge stabilization and the feasibility of this algorithm is verified by various pattern machining in the constant preload conditions for the cathode electrode.

  • PDF

An Experimental Study on the Improvement of Microscopic Machinability of Glass using the Discharging Peak Control Techniques in the Electrochemical Discharge Machining Technologies

  • Chang, In-Bae;Kim, Nam-Hyeock;Kim, Byeong-Hee;Kim, Heon-Young
    • KSTLE International Journal
    • /
    • 제3권2호
    • /
    • pp.95-100
    • /
    • 2002
  • Electrochemical discharge machining is a very recent technique for non-conducting materials such as ceramics and glasses. ECDM is conducted in the NaOH solution and the cathode electrode is separated from the solution by H$_2$ gas bubble. Then the discharge is appeared and the non-conductive material is removed by spark and some chemical reactions. In the ECDM technology, the H$_2$ bubble control is the most important factor to stabilize the discharging condition. In this paper we proposed the discharge peak monitoring/discharging duty feedback algorithms fur the discharge stabilization and the feasibility of this algorithm is verified by various pattern machining in the constant preload conditions for the cathode electrode.

동하중 조건에서 마이크로 크기의 공기 혼입 윤활유의 틈새 거동 연구 (A Study on Clearance Behaviors with Micro Scaled Lubricant Aeration under the Dynamically-Loaded Condition)

  • 장시열
    • Tribology and Lubricants
    • /
    • 제22권1호
    • /
    • pp.26-32
    • /
    • 2006
  • This work analyzes the behaviors of aerated lubricant in the gap between con-rod bearing and journal. Aerated lubricant influences two major factors on the film formation. One is the density characteristics of the lubricant due to the volume change by the bubbles and the other is the viscosity characteristics of the lubricant due to the surface tension of the bubble. Those two major factors surprisingly increase the load capacity in certain ranges of bubble sizes and densities. Modified Reynolds' equation is developed with the consideration of aerated ratio in the lubricant and journal locus is computed with the Mobility method after the computation of two dimensional pressure distributions over the bearing area.

정수 및 폐수처리에서 오존 미세기포와 초미세기포 기술의 적용 : 리뷰 (Applications of Ozone Micro- and Nanobubble Technologies in Water and Wastewater Treatment: Review)

  • 테킬 안디넷;김일호;이재엽
    • 상하수도학회지
    • /
    • 제31권6호
    • /
    • pp.481-490
    • /
    • 2017
  • Water and wastewater treatment has always been a challenging task due to the continuous increase in amount and the change in characteristics of the poorly biodegradable and highly colored organic matters, as well as harmful micro-organisms. Advanced techniques are therefore required to successfully remove these pollutants from water before reuse or discharge to receiving water bodies. Application of ozone, which is a powerful oxidant and disinfectant, alone or as part of advanced oxidation process depends on the complex kinetic reactions and the mass transfer of ozone involved. Micro- and nano bubbling considerably improves gas dissolution compared to conventional bubbles and hence mass transfer. It can also intensify generation of hydroxyl radical due to collapse of the bubbles, which in turn facilitates oxidation reaction under both alkaline as well as acidic conditions. This review gives the overview of application of micro- and nano bubble ozonation for purification of water and wastewater. The drawbacks of previously considered techniques and the application of the hydrodynamic ozonation to synthetic aqueous solutions and various industrial wastewaters are systematically reviewed.

Case report: Mass mortality of olive flounder (Paralichthys olivaceus) caused by acute gas bubble disease

  • Lee, Yoonhang;Kim, Nameun;Lee, Ju-yeop;Kang, Hyoyeong;Sung, Minji;Yu, Young-Bin;Kim, Kyunghoi;Je, Jae-Young;Kim, Hyun-Woo;Kang, Ju-Chan;Kim, Do-Hyung
    • 한국어병학회지
    • /
    • 제34권2호
    • /
    • pp.255-259
    • /
    • 2021
  • This is the first report describing acute mass mortality occurred in juvenile olive flounder (Paralichthys olivaceus) caused by gas bubble disease (GBD). A total of 610 fish (average weight = 35 g), which were more than half of the fish acclimated at 17℃ in an aquarium, were killed within two days of acclimation. The dead and moribund fish showed excessively opened opercula and mouths, and occasionally, severe exophthalmia. Through microscopic observation, numerous gas emboli were found in the gills of the dead and live fish, while the fish were not infected with any microbial pathogens. The dissolved oxygen (DO) saturation level of the rearing water and seawater nearby the facility reached 145% and 286%, respectively, whereas other water quality parameters (such as salinity, pH, and chemical oxygen demand) were normal. The extreme saturation rate of seawater in the shore nearby seemed to be due to an enormous algal bloom that occurred there. Through molecular identification based on 18S rDNA sequences, the most dominant algal species was most closely related to Ulva californica (99.87% sequence identity) followed by U. prolifera, U. linza, and U. curvata (99.81%). Therefore, it can be concluded that supersaturated seawater due to mass algal bloom caused gas bubble disease in the olive flounder, leading to mass mortality. After technical adjustment, such as increased aeration, lowered water circulation rate, and inlet water filtration using micro-pore carbon filters, the DO level became normal, no further mortality occurred and the status of the fish was stabilized.

유류오염토양 처리를 위한 마이크로나노버블 토양세척에 관한 연구 (A Study on the Treatment of Oil Contaminated Soils with Micro-nano Bubbles Soil Washing System)

  • 최호은;정진희;한영립;김대용;정병길;최영익
    • 한국환경과학회지
    • /
    • 제20권10호
    • /
    • pp.1329-1336
    • /
    • 2011
  • The objectives of this study are to examine the processing of oils contamination soil by means of using a micronano-bubble soil washing system, to investigate the various factors such as washing periods, the amount of micro-nano bubbles generated depending on the quantity of acid injection and quantity of air injection, to examine the features involved in the elimination of total petroleum hydrocarbons (TPHs) contained in the soil, and thus to evaluate the possibility of practical application on the field for the economic feasibility. The oils contaminated soil used in this study was collected from the 0~15 cm surface layer of an automobile junkyard located in U City. The collected soil was air-dried for 24 hours, and then the large particles and other substances contained in the soil were eliminated and filtered through sieve No.10 (2 mm) to secure consistency in the samples. The TPH concentration of the contaminated soil was found to be 4,914~5,998 mg/kg. The micronano-bubble soil washing system consists of the reactor, the flow equalization tank, the micronano- bubble generator, the pump and the strainer, and was manufactured with stainless material for withstanding acidic phase. When the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 30 minutes were respectively identified as 4,931 mg/kg (18.9%), 4,678 mg/kg (18.9%) and, 4,513 mg/kg (17.7%). And when the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 120 minutes were respectively identified as4,256 mg/kg (22.3%), 4,621 mg/kg (19.7%) and 4,268 mg/kg (25.9%).

미세기포를 이용한 퇴적물 정화 (Remediation of Sediments using Micro-bubble)

  • 강상율;김형준;김충일;박현주;나춘기;한무영
    • 대한환경공학회지
    • /
    • 제38권8호
    • /
    • pp.420-427
    • /
    • 2016
  • 본 연구는 미세기포를 이용하여 하천 및 호수의 퇴적물 내 영양염류 제어 가능성을 살펴보고자 하였다. 이를 위해 실제 호수에서 퇴적물을 채취하여 용출 특성 실험 및 기포를 이용한 퇴적물 및 영양염류 제거 실험을 수행하였다. 연구에 사용된 퇴적물의 입도분석 결과, 점토와 실트(<0.075 mm)비율은 약 7.7%, 모래(0.075~4.75 mm)는 약 67.8%, 자갈은(${\geq}4.75mm$) 약 24.5%로 나타났다. 총질소(T-N), 총인 (T-P), 강열감량은 각각 2,790~3,260 mg/kg, 261~311 mg/kg, 4.1~9.6%로 나타났다. 퇴적물의 입도별 T-N과 T-P을 분석한 결과, 입도가 클수록 퇴적물의 T-N와 T-P 함량은 감소하는 경향을 나타냈다. 이는 입도가 클수록 비표면적이 작아져 흡착되는 오염물질량이 줄어들기 때문으로 판단된다. 기포의 특성에 따른 퇴적물의 제거효율을 분석한 결과, 압력 6기압, 순환률 30%, 응집제 주입량 15 ppm의 조건으로 실험을 수행하였을 때 퇴적물의 제거율이 19.9%로 가장 높게 나타났다. 이 때의 T-N, T-P의 제거효율도 21.4, 22.6%로 가장 높게 나타났다. 운전조건을 고정시키고 기포 주입횟수를 증가시키면서 T-N과 T-P의 제거효율을 살펴본 결과, 주입횟수 2회까지 T-N과 T-P의 제거효율은 높았으나, 3회부터는 제거효율이 낮아짐에 따라 주입횟수가 증가하더라도 제거효율에는 큰 변화를 보이지 않았다. 그리고 미세입자가 제거된 퇴적물의 영양염류 용출량은 미세입자를 제거하지 않은 퇴적물의 용출량보다 약 20.1~64.3% 정도 감소함을 알 수 있었다. 이를 통해 미세기포를 퇴적물에 반복적으로 주입하는 방안은 퇴적물 및 퇴적물에서의 영양염류 용출을 제어하는 효과적인 방안으로써 가능성이 있음을 확인할 수 있었다.