• Title/Summary/Keyword: Micro Backward Facing Step Channel

Search Result 2, Processing Time 0.017 seconds

Single-Camera Micro-Stereo 4D-PTV (단일카메라 마이크로 스테레오 4D-PTV)

  • Doh, Deog-Hee;Cho, Young-Beom;Lee, Jae-Min;Kim, Dong-Hyuk;Jo, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1087-1092
    • /
    • 2010
  • A micro 3D-PTV system has been constructed using a single camera system. Two viewing holes were created behind the object lens of the microscopic system to construct a stereoscopic viewing image. A hybrid recursive PTV algorithm was used. A concept of epipolar line was adopted to eliminate many spurious candidates. Three-dimensional velocity vector fields were obtained by calculating the three-dimensional displacements of particles that were identified as being identical. The system consists of a laser light source (Ar-ion, 500 mW), one high-definition camera ($1028{\times}1024$ pixels, 500 fps), a circular plate with two viewing holes, and a host computer. The performance of the developed algorithm was tested using artificial images. The characteristic of the vector recovery ratio was investigated for the particle numbers. A micro backward-facing step channel ($H{\times}h{\times}W:\;36{\mu}m{\times}70{\mu}m{\times}3000{\mu}m$) was measured using the developed measurement system. The results were in good qualitative agreement with other results.

Predictions of Microscale Separated Flow using Langmuir Slip Boundary Condition (Langmuir 미끄럼 경계조건을 이용한 미소 박리유동의 예측)

  • Lee, Do-Hyung;Meang, Joo-Sung;Choi, Hyung-Il;Na, Wook-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1097-1104
    • /
    • 2003
  • The current study analyzes Langmuir slip boundary condition theoretically and it is tested in practical numerical analysis for separation-associated flow. Slip phenomenon at the channel wall is properly implemented by various numerical slip boundary conditions including Langmuir slip model. Compressible backward-facing step flow is compared to other analysis results with the purpose of diatomic gas Langmuir slip model validation. The numerical solutions of pressure and velocity distributions where separation occurs are in good agreement with other numerical results. Numerical analysis is conducted for Reynolds number from 10 to 60 for a prediction of separation at T-shaped micro manifold. Reattachment length of flows shows nonlinear distribution at the wall of side branch. The Langmuir slip model predicts fairly the physics in terms of slip effect and separation.