• Title/Summary/Keyword: Micro/Nano-Mechanical Properties

Search Result 174, Processing Time 0.035 seconds

Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment

  • Park, Jae-Jun;Yoon, Ki-Geun;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.98-101
    • /
    • 2011
  • A 10 nm nano-silica was introduced to a conventional 3 ${\mu}M$ micro-silica composite to develop an eco-friendly new electric insulation material for heavy electric equipment. Thermal and mechanical properties, such as glass transition temperature (Tg), dynamic mechanical analysis, tensile and flexural strength, were studied. The mechanical results were estimated by comparing scale and shape parameters in Weibull statistical analysis. The thermal and mechanical properties of conventional epoxy/micro-silica composite were improved by the addition of nano-silica. This was due to the increment of the compaction via the even dispersion of the nano-silica among the micro-silica particles.

The Properties of DSC and DMA for Epoxy Nano-and-Micro Mixture Composites

  • Lee, Chang-Hoon;Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.69-72
    • /
    • 2010
  • This study investigates the thermal and mechanical properties of insulation elements through the mixing of epoxy based micro and nano particles. Regarding their thermal properties, differential scanning calorimeter and dynamic mechanical analyser were used to calculate the cross-linking densities for various types of insulation elements. The mechanical properties of the bending strength, the shape and scale parameters, were obtained using the Weibull plot. This study obtained the best results in the scale parameters, at 0.5 phr, for the bending strength of the epoxy nano-and-micro mixture composites.

Development of Hybrid RP System and Fabrication of Nano Composite parts (하이브리드 쾌속 조형 시스템의 개발 및 나노 복합재 부품 제작)

  • Kim S.G.;Jung W.K.;Chu W.S.;Kim H.J.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.220-223
    • /
    • 2005
  • The rapid prototyping (RP) technology has been advanced for various applications such as verification of design, functional test. However, many RP machines still have low accuracy and limitation of applications for various materials. In this research, a hybrid RP system was developed to improve precision of micro parts. This hybrid system consists of deposition and material removal process by mechanical micro machining to fabricate nano composites using photo-curable polymer resin with various nano particles. In this work, using hybrid RP process with Multi-Walled Carbon Nano Tube (MWCNT) and hydroxyapatite, micro parts were fabricated. The precision of parts was evaluated based on the original CAD design, and to see the effect of nano particles on mechanical properties, tensile strength was measured. From the results of experiments, it was confirmed that the part made by hybrid process had higher precision, and the addition of nano particles improved mechanical properties.

  • PDF

Review of Micro/Nano Nondestructive Evaluation Technique (II): Measurement of Acoustic Properties (마이크로/나노 비파괴평가 기술(II): 음향특성계측)

  • Kim, Chung-Seok;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.418-430
    • /
    • 2012
  • The present paper reviews the micro and nano nondestructive evaluation(NDE) technique that is possible to investigate the surface and measure the acoustic properties. The technical theory, features and applications of the ultrasonic atomic force microscopy(UAFM) and scanning acoustic microscopy(SAM) are illustrated. Especially, these technologies are possible to evaluate the mechanical properties in micro/nano structure and surface through the measurement of acoustic properties in addition to the observation of surface and subsurface. Consequently, it is thought that technique developments and applications of these micro/nano NDE in advanced industrial parts together with present nondestructive industry are widely possible hereafter.

The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica

  • Moosa Mazloom;Amirhosein Abna;Hossein Karimpour;Mohammad Akbari-Jamkarani
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.495-511
    • /
    • 2023
  • In this research, the impact of micro-silica, nano-silica, and polypropylene fibers on the fracture energy of self-compacting concrete was thoroughly examined. Enhancing the fracture energy is very important to increase the crack propagation resistance. The study focused on evaluating the self-compacting properties of the concrete through various tests, including J-ring, V-funnel, slump flow, and T50 tests. Additionally, the mechanical properties of the concrete, such as compressive and tensile strengths, modulus of elasticity, and fracture parameters were investigated on hardened specimens after 28 days. The results demonstrated that the incorporation of micro-silica and nano-silica not only decreased the rheological aspects of self-compacting concrete but also significantly enhanced its mechanical properties, particularly the compressive strength. On the other hand, the inclusion of polypropylene fibers had a positive impact on fracture parameters, tensile strength, and flexural strength of the specimens. Utilizing the response surface method, the relationship between micro-silica, nano-silica, and fibers was established. The optimal combination for achieving the highest compressive strength was found to be 5% micro-silica, 0.75% nano-silica, and 0.1% fibers. Furthermore, for obtaining the best mixture with superior tensile strength, flexural strength, modulus of elasticity, and fracture energy, the ideal proportion was determined as 5% micro-silica, 0.75% nano-silica, and 0.15% fibers. Compared to the control mixture, the aforementioned parameters showed significant improvements of 26.3%, 30.3%, 34.3%, and 34.3%, respectively. In order to accurately model the tensile cracking of concrete, the authors used softening curves derived from an inverse algorithm proposed by them. This method allowed for a precise and detailed analysis of the concrete under tensile stress. This study explores the effects of micro-silica, nano-silica, and polypropylene fibers on self-compacting concrete and shows their influences on the fracture energy and various mechanical properties of the concrete. The results offer valuable insights for optimizing the concrete mix to achieve desired strength and performance characteristics.

AC Electrical and Mechanical Properties of Epoxy-Nano-Microsilica Mixed Composites for Eco-Friendly GIS Spacer (친환경 GIS Spacer용, 에폭시-나노-마이크로실리카 혼합 콤포지트의 교류 전기적, 기계적 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1181-1188
    • /
    • 2018
  • In order to develop new insulating materials for GIS Spacer using environmentally friendly insulating gas, three kinds of dispersed liquid nano composites of solid epoxy /nano layered silicate filled material were prepared. And the epoxy/nano/micro silica composite was prepared by mixing epoxy/nano 3 phr dispersion/4 kinds of filler contents(40,50,60, 70wt%). The electrical insulation breakdown strengths of the nano and nano/micro mixed composites were evaluated by using 8 kinds of samples including the original epoxy. The mechanical tensile strength of the epoxy / nano / micro silica composite were evaluated, also. The TEM was measured to evaluate the internal structure of nano/micro composites. As a result, it was confirmed that the layered silicate nano particles was exfoliated through the process of inserting epoxy resin between silicate layers and the layers. In addition, dispersion of nano / micro silica resulted in improvement of electrical insulation breakdown strength with increase of filling amount of dense tissue with nanoparticles inserted between microparticles. In addition, the tensile strength showed a similar tendency, and as the content of microsilica filler increased, the mechanical improvement was further increased.

Measurement Techniques of Mechanical Properties for Development of Nano Fabrication Process (나노 공정 개발을 위한 기계적 물성 측정 기법)

  • Lee, H.J.;Choi, B.I.;Kim, W.D.;Oh, C.S.;Han, S.W.;Hur, S.;Kim, J.H.;Ko, S.G.;Ahn, H.G.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1104-1110
    • /
    • 2003
  • There are many applications of nanostructures, have been suggested by lots of researchers. It is highly required to measure the properties of nano-sized materials for design and fabrication of the nanostructures. In this paper, several techniques for measuring the mechanical properties of nano-structures are presented laying emphasis on the activity of Nano Property Measurement Team in KIMM. Some advanced applications of nano-indenter are described for measuring elastic, visco-elastic, frictional and adhesive properties as well as the standard methods of it. Micro-tensile test technique with accurate in-plane strain measurement method is also presented and its role in the property measurement of nanostructures is discussed.

  • PDF

A study on stress-strain relation measurement for micro scale UV-curable polymer structure (UV-경화 폴리머 마이크로 구조물의 응력-변형률 관계 측정에 관한 연구)

  • Jeong S.J.;Kim J.H.;Lee H.J.;Park S.H.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.492-497
    • /
    • 2005
  • In this study, we propose an advanced nanoindentaion test, Nano Pillar Compression Test (NPCT) to measure a stress-strain relation for micro scale polymer structures. Firstly, FEM analysis is performed to research behavior of micro polymer pillars in several specimen aspect ratios and different friction conditions between specimen and tip. Based on the FEM results, micro scale UV-curable polymer pillars are fabricated on a substrate by Nano Stereo Lithography (NSL). To measure their mechanical properties, uniaxial compression test is performed using nanoindentation apparatus with flat-ended diamond tip. In addition, the dependency of compression properties on loading condition and specimen size are discussed.

  • PDF