• Title/Summary/Keyword: Micracracking Fracture Toughness

Search Result 2, Processing Time 0.014 seconds

The Aging Effect of $Avimid^(R)$ K3B/1M7 Laminates in $80^{\circ}C$ Water ($Avimid^(R)$ K3B/IM7 복합재료의 $80^{\circ}C$ 물에서의 노화현상)

  • Kim Hyung-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.23-30
    • /
    • 2005
  • The Hygrothermal aging of the laminates of $Avimid^(R)$ K3B/IM7 in $80^{\circ}C$ water was studied as a function of immersion time prior to forming microcracks. The factors causing the $80^{\circ}C$ water to degradation of the laminates could be the degradation of the matrix toughness, the change in residual stresses or the interfacial damage between the fiber and the matrix. The times to saturation in $80^{\circ}C$ water for the laminates and for the neat resin were 100 hours and 500 hours. After 500 hours aging of the neat resin, the glass transition temperature was changed less than 1% by DSC test, and the weight gain was 1.55% increase with the diffusion coefficient $7\times10^{-6}m/s^2$ and the fracture toughness was decreased about 41%. After 100 hours fully saturated aging of the ${[+45/0/-45/90]}_s$ K3B/IM7 laminates in $80^{\circ}C$ water, the weight gain was 0.41% increase with the diffusion coefficient $1\times10^{-6}m/s^2$. In 100 hours, the loss of the fracture toughness of the laminates was 43.8% of the original toughness by the microcracking fracture toughness criterion. Therefore, the main factor to degrade the microcracking toughness of the laminates could be the degradation of the matrix fracture toughness.

THE AGING EFFECT Of K3B/IM7 IN $80^{\circ}C$ WATER

  • Kim Hyungwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.31-34
    • /
    • 2005
  • Hygrothermal aging of the laminates of $Avimid^{R}$ K3B/IM7 in $80^{\circ}C$ water was studied as a function of immersion time prior to forming microcracks. The factors causing the $80^{\circ}C$ water to degradation of the laminates could be the degradation of the matrix toughness, change in residual stresses or interfacial damage between the fiber and matrix. The times to saturation in $80^{\circ}C$ water for the laminates and the neat resin are 100 hours and 500 hours. After 500 hours aging of the neat resin in $80^{\circ}C$ water, the glass transition temperature was changed less than $1\%$ by DSC test and the weight gain was $1.55\%$ increase. After 500 hours aging, the fracture toughness of the neat resin was decreased about $37\%$ by 3-point bending test. After 100 hours aging of the [+45/0/-45/90]s K3B/IM7 laminates in $80^{\circ}C$ water, the weight gain was $0.41\%$ increase. The $80^{\circ}C$ water diffusion rate into the neat resin was faster than into the laminates. In 100 hours, the loss of the microcracking toughness of the laminates was $28\%$ of the original toughness by our own microcracking fracture toughness criterion.

  • PDF