• Title/Summary/Keyword: Michaelis-Menten

Search Result 146, Processing Time 0.025 seconds

Partial Purification and Characterization of Minor Form of Phosphofructokinase from the Host Fraction of Chickpea(Cicer arietinum L. cv. Amethyst) Nodules (병아리콩(Cicer arietinum L. cv. Amethyst) 근류내의 플라스티드 포스포프룩토오스 키나아제의 분리 및 특성)

  • Lee, Hoi-Seon
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.355-362
    • /
    • 1998
  • The minor form of phosphofructokinase (EC 2.7.1.11; PFK), which was suggested to be of plastid origin from the host fraction of chickpea nodules, was isolated as a small protein with apparent molecular mass near 220 kDa and purified to a high degree. SDS-PAGE and western blot indicated that the enzyme was made up of a homotetrameric structure (55 kDa). The enzyme had sharp pH profiles with maximal activities at pH 8 and displayed Michaelis-Menten kinetics with respect to Fru-6-P and nucleoside triphosphate substrate at the pH optimum (pH 8) and at pH 7. MgATP was the most effective phosphoryl donor. Phosphoenolpyruvate was a potent inhibitor of minor PFK activity, and the enzyme was also strongly inhibited by 3-phosphoglycerate, 2-phosphoglycerate, and to a lesser extent, PPi. Minor PFK was weakly activated by KCl, NaCl and Pi, and was inhibitory at high concentration of KCl and Pi.

  • PDF

Hydrolysis of Cellulose by Immobilized Cellulase in a Packed Bed Reactor (충진층 반응기에서 고정화 cellulase에 의한 셀룰로스 가수 분해)

  • Kang, Byung Chul;Lee, Jong Baek
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1365-1370
    • /
    • 2013
  • Immobilized cellulase on weak ion exchange resin showed a typical Langmuir adsorption isotherm. Immobilized cellulase had better stability with respect to pH and temperature than free cellulase. Kinetics of thermal inactivation on free and immobilized cellulase followed first order rate, and immobilized cellulase had a longer half-life than free cellulase. The initial rate method was used to characterize the kinetic parameters of free and immobilized enzyme. The Michaelis-Menten constant $K_m$ was higher for the immobilized enzyme than it was for the free enzyme. The effect of the recirculation rate on cellulose degradation was studied in a recycling packed-bed reactor. In a continuous packed-bed reactor, the increasing flow rate of cellulose decreased the conversion efficiency of cellulose at different input lactose concentrations. Continuous operation for five days was conducted to investigate the stability of long term operation. The retained activity of the immobilized enzymes was 48% after seven days of operation.

Effective Diffusivity of Substrate of an Immobilized Microorganism in Ca- Alginate Gels (고정화 미생물의 기질 유효 확산)

  • 김광;선우양일;박승조
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.110-117
    • /
    • 1989
  • The fiffusion characteristics of substrate of varing biomass concentrations into and from Ca- alginate gel beads in well-stirred solutions were investigated. Ca-alginate gel beads were immobilized by Zymomonas mobilis or free from cells. The values of the diffusion coefficient of substrate were calculated by means of the method of Least squares and Random pore model. Reaction rates are expressed by the Michaelis-Menten type equation, and the results are compared with experimental data. Intraparticle effective diffusivity of substrate resistance on reaction by using immobilized Z.mobilis entrapped by Ca-alginated gel seemed to be restricted by cell density. The experimental data also indicated relationship between the effective diffusivity and the cell concentration used in the gel preparation.

  • PDF

Studies on Naringinase Produced from Aspergillus nidulans (Part 4) Immobilization of Naringinase on DEAE-Sephadex A-25 (Aspergillus nidulans가 생산하는 Naringinase에 관한 연구 (제4보) DEAE-Sephadex A-25에 의한 Naringinase의 고정화)

  • 송충석;변유량;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.3
    • /
    • pp.141-147
    • /
    • 1979
  • Naringinase from Atpergillus nidulans was immobillized on DEAE-Sephadex A-25 and its characteristics were studied. The optimal conditions for the preparation of the immobilized enzyme were as follow; optimal pH, incubation time and the suitable amount of enzyme were 6.0, 30 min. and 110 units per gram of the dried ion exchage resin, respectively. The optimal pH of the immobilized enzyme was higher than that of the native enzyme. The optimal temperature increased from 4$0^{\circ}C$ to 5$0^{\circ}C$. The heat and pH stability of the immobillized enzyme were better than those of the native enzyme. No significant difference in the Michaelis constant was detected. Activation energy of the immobilized enzyme was 7.96 Kcal/mole, and the apparent Michaelis rate equation was used to describe the action of this material. The degree of hydrolysis was dependant on the flow rate at low rate of perfusion through the column. As the flow rate increased, the value of the apparent Km decreased.

  • PDF

Competitive Spectrophotometry for Microbial Dipeptide Transport Systems

  • Hwang, Se-Young;Ki, Mi-Ran;Cho, Suk-Young;Lim, Wang-Jin;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.92-97
    • /
    • 1996
  • Portage kinetic constants of peptide transport can be measured by competitive spectrophotometry. The kinetic constants of L-Glu-L-Glu transport in Escherichia coli were ascertained using L-Phe-L-3-thia-Phe (PSP) as a detector. Since the production of thiophenol upon intracellular hydrolysis of PSP was competitively inhibited by L-Glu-L-Glu, it was able to compute the kinetic constants of L-Glu-L-Glu using this method. The resulted data were in agreement with the values obtained by the method of Michaelis-Menten kinetics. The potential of this method was examined against dipeptide transport systems in various microorganisms. These results strongly suggest that the overall properties of individual systems for dipeptide transports can be easily characterized by competitive spectrophotometry.

  • PDF

CELL-MEDIATED IMMUNE PROCESSES AND CONTROL OF CANCER

  • Lee, Kwon-Soon;Chung, Hyeng-Hwan
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.82-85
    • /
    • 1991
  • Cell kinetics and the chemical mass action principle formulate the basis of immune system dynamics which may be synthesized mathematically as cascades of bilinear systems which are connected by nonlinear nondynamical terms. In this manner, a model for cell-mediated immune response (CMI) to tumor antigens and debris is developed. We also consider parametric control variables relevant to the latest experimental data, i.e., sigmoidal dose-response relationship and Michaelis-Menten dynamics. The preliminary results show that the parametric control variable is important in the destruction of tumors. As well as that, the exacerbation theory is a good method for tumor treatment. Finally, tumor control as an application of immunotherapy is analyzed from the basis established above.

  • PDF

Studies on the Pectolytic Enzymes from Byssochlamys fulva II (Byssochlamys fulca가 생성하는 펙틴질 분해효소에 관한 연구 II)

  • 남영중;김남수;홍순우
    • Korean Journal of Microbiology
    • /
    • v.21 no.2
    • /
    • pp.86-94
    • /
    • 1983
  • Polygalacturonase of Byssochlamys fulva was purified and characterized. Specific activity increased from 2.21 units/mg protein to 10.47 units/mg protein through $(NH_4)_2SO_4$ treatment, SephadexG-100 gel filtration, and DEAE-Sephadex ion exchange chromatography. Divalent cations, such as $Ca^{++}\;and\;Cu^{++}$, increased polygalacturonase activity greatly. Added as $10^{-3}M$ concentration, $Ca^{++}$ ion enhanced enzyme activity 9.8folds. Optimum temperature was $50^{\circ}C$ and optimum pH was 5.0. Activation energy of reaction was 8.69 Kcal/mole. Michaelis-Menten $constant(K_M)\;and\;V_{max}$ of reaction were $6.27{\times}10^{-3}mole/l\;and\;2.85{$\mu}moles/min$. Polygalacturonase of Byssochlamys fulva preferred polygalacturonic acid to pectin as substrate and was presumed as endo-type on the basis of the relationship between viscosity reduction and substrate degradation. Molecular weight of polygalacturonase was estimated as 55,000.

  • PDF

Role of Diffusion in the Kinetics of Reversible Enzyme-catalyzed Reactions

  • Szabo, Attila;Zhou, Huan-Xiang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.925-928
    • /
    • 2012
  • The accurate expression for the steady-state velocity of an irreversible enzyme-catalyzed reaction obtained by Shin and co-workers (J. Chem. Phys. 2001, 115, 1455) is generalized to allow for the rebinding of the product. The amplitude of the power-law ($t^{-1/2}$) relaxation of the free- and bound-enzyme concentrations to steady-state values is expressed in terms of the steady-state velocity and the intrinsic (chemical) rate constants. This result is conjectured to be exact, even though our expression for the steady-state velocity in terms of microscopic parameters is only approximate.

Characterization of Acid Phosphatase from Carrots (당근 Acid Phosphatase의 특성)

  • Kim, Gi-Nahm
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.3
    • /
    • pp.490-495
    • /
    • 1994
  • Acid phosphatase (EC3.1.3.2) from carrots was partially purified by ammonium sulfate fractionation (30%-80%), Sephacryl S-200 gel filtration, cm-Sepharose CL-6B and DEAE -Sephacel ion exchange chromatography. The optimum ph and temperature of acid phosphatase from carrots were pH 5.5 and 55$^{\circ}C$, respectively. The enzyme was most stable at ph 6.0 and relatively unstable below pH 4.0 . The activation energy of the enayme was determined to be 10.6kcal/mole. The enzyme utilized p-nitrophenyl phosphate as a substrate among tested possible substrates, whereas it hydrolyzed 5' -IMP and 5'-GMP poorly. The Michaelis -Menten constant(Km) of the enzyme with p-nitrophenyl phosphate as a substrate was identified as 0.55mM. Amongtested metal ions and inhibitors, Al+++ Zn++, Cu++ , fluoride, metavanadate and molybdate ions inhibited the enzyme activity drastically.

  • PDF

Prediction of Continuous Reactors Performance Based on Batch Reactor Deactivation Kinetics Data of Immobilized Lipase

  • Murty, V.Ramachandra;Bhat, Jayadev;Muniswaran, P.K.A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.225-230
    • /
    • 2002
  • Experiments on deactivation kinetics of immobilized lipase enzyme from Candida cyl-indracea were performed in stirred bath reactor using rice bran oil as the substrate and temperature as the deactivation parameter. The data were fitted In first order deactivation model. The effect of temperature on deactivation rate was represented by Arrhenius equation. Theoretical equations were developed based on pseudo-steady state approximation and Michaelis -Menten rate expression to predict the time course of conversion due to enzyme deactivation and apparent half-life of the immobilized enzyme activity in PFR and CSTH under constant feed rate polity for no diffusion limitation and diffusion limitation of first order. Stability of enzyme in these continuous reactors was predicted and factors affecting the stability were analyzed.