• Title/Summary/Keyword: Micellar

Search Result 272, Processing Time 0.025 seconds

A NMR Study on the Micellization of Sodium Dodecyl Sulfate in ω-Phenylalkylammonium Salt Solution (1H NMR을 이용한 ω-Phenylalkylammonium Salt의 수용액에서 Sodium Dodecyl Sulfate의 미셀에 관한 연구)

  • Oh, Jung Hee
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.628-634
    • /
    • 1999
  • The orientational binding of ${\omega}$-phenylakylammonium ions to the sodium dodecyl (SDS) micellar interface has been studied from $^{1}H\;NMR$ chemical shift data. The NMR resonaces of the methylene protons of SDS and aromatic protons embedded into the micellar interior have shown the upfield shift. The aromatic induced chemical shifts of the alkyl chain methylene protons of SDS demonstrate the deep penetration into the palisade layer by these organic salts. Alkylammonium groups have been considered to be oriented toward outside of the micellar interface. Aromatic rings have been thought to be oriented toward the micellar core. The depth of penetration by organic salts has been observed to increase with the length of alkyl chain.

  • PDF

Characteristics of Nitrate Removal Using Micellar-enhanced Ultrafiltration (MEUF에 의한 질산성 질소 제거에 관한 연구)

  • 백기태;이현호;김보경;김호정;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.36-43
    • /
    • 2003
  • Feasibility of micellar-enhanced ultrafiltration far the removal of nitrate was investigated using cationic surfactants, cetylpyridinium chloride and octadecylamine acetate. The removal of nitrate increased as the molar ratio of surfactant increased. With the molar ratio of 3, at least 80% of nitrate was removed, while > 98% of nitrate was removed at the surfactant molar ratio of 10. Octadecylamine acetate showed higher removal efficiency of nitrate and higher rejection of surfactant than cetylpyridinium chloride because of the accessibility of nitrate to surfactant micelles due to head group of surfactant. Octadecylamine acetate turned out to be a better surfactant than cetylpyridinium chloride for micellar-enhanced ultrafiltration to remove nitrate from groundwater.

Micellar Catalysis on the Hydrolysis of the Fungicidal N-[1-(benzotriazol-1-yl)benzyl]aniline (항균성, N-[1-(benzotriazol-1-yl)benzyl]aniline의 가수분해 반응에 미치는 미셀 촉매효과)

  • Sung, N.D.;Park, C.K.;Lim, C.W.
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.189-193
    • /
    • 1994
  • The hydrolysis of fungicidal N-[1-(benzotriazol-1-yl)benzyl]aniline (BBA) molecule in the presence of cationic cetyltrimethylammonium bromide (CTABr) and anionic sodium laurylsulfate (NaLs) micellar solutions has been studied kinetically. The Micellar catalysis effect shows that the rate is slightly accelerated by the addition of the anionic NaLs at high pH and the binding constant (Ks) is $1.45{\times}10^4M^{-1}$. This result presumably is due to the electrostatic stabilization by the anionic micelle of the developing carbocation in the transition state rather than the hydrophobic character (${\pi}$: 4.93) of (BBA).

  • PDF

Reversed Micellar Protein Extraction in a Hollow Fiber Membrane Extractor (단백질 추출용 역미셀 실관막장치에 관한 연구)

  • 윤현희;박상준유인상
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.332-338
    • /
    • 1994
  • Solubilization phenomena of a protein in a reversed micellar solution were investigated and a hollow fiber membrane extractor was tested for reversed micellar protein extraction equipment. Alkaline protease was used as a model protein compound and the reversed micellar solution was consisted of AOT and isooctane. It was found that protein solubilization was strongly influenced by ionic strength and pH. The distribution coefficient of the protease between the aqueous solution and the AOT/isooctane solution was also observed to be as high as 4.0 within the scope of this experiment. A hollow fiber membrane extractor was constructed and tested for the protein extraction. The overall mass transfer coefficient at a typical experimental condition of this study was observed to be $6.7{\times}10^{-5}cm/s$. It was also found that the mass transfer resistance on reversed micellar solution was the dominant resistance for the protein transfer.

  • PDF

Dephosphorylation of Diphenyl-4-Nitrophenyl Phosphinate(DPNPIN) onto 2-Alkylbenzimidazolide Anion in TTABr Micellar Solution (TTABr 미셀 용액속에서 2-알킬벤즈이미다졸 음이온에 의해 추진되는 디페닐-4-니트로페닐 포스페네이트(DPNPIN)의 탈인산화반응)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.981-992
    • /
    • 2015
  • This study is mainly focused on micellar effect of tetradecyltrimethyl ammonium bromide(TTABr) solution including alkylbenzimidazole(R-BI) on dephosphorylation of diphenyl-4-nitrophenylphosphinate(DPNPIN) in carbonate buffer(pH 10.7). Dephosphorylation of DPNPIN is accelerated by $BI^{\Theta}$ ion in $10^2$ M Carbonate buffer(pH 10.7) of $4{\times}10^{-4}$ M TTABr solution up to 80 times as compared with the reaction in Carbonate buffer by no benzimidazole(BI) solution of TTABr. The value of pseudo first order rate constant($k_{\psi}$) of the reaction in TTABr solution reached a maximum rate constant increasing micelle concentration. The reaction mediated by $R-BI^{\Theta}$ in micellar solutions are obviously slower than those by $BI^{\Theta}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of $R-BI^{\Theta}$ in Stern layer of micellar solution. The surfactant reagent, TTABr, strongly catalyzes the reaction of DPNPIN with R-BI and its anion($R-BI^{\Theta}$) in Carbonate buffer(pH 10.7). For example, $4{\times}10^{-4}$ M TTABr in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\psi}=99.7{\times}10^{-4}1/sec$) of the dephosphorylation by a factor ca. 28, when compared with reaction($k_{\psi}=3.5{\times}10^{-4}1/sec$) in BI solution(without TTABr). And no TTABr solution, in BI solution increase the rate constant($k_{\psi}=3.5{\times}10^{-4}1/sec$) of the dephosphorylation by a factor ca. 39, when compared with reaction ($k_{\psi}=1.0{\times}10^{-5}1/sec$) in water solution(without BI).

Micellar Enhanced Ultrafiltration (MEUF) and Activated Carbon Fiber (ACF) Hybrid Processes for the Removal of Cadmium from an Aqueous Solution

  • Rafique, Rahman Faizur;Lee, Seunghwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.775-780
    • /
    • 2014
  • Micellar enhanced ultrafiltration (MEUF) was used to remove cadmium from an aqueous solution using sodium dodecyl sulfate (SDS) as a surfactant. Operational parameters such as initial permeate flux, retentate pressure, initial cadmium concentration, pH solution, molecular weight cut-off (MWCO), and molar ratio of cadmium to SDS were investigated. Removal efficiency of cadmium from an aqueous solution increased with an increase of retentate pressure, pH solution and molar ratio of cadmium to SDS, and decreased with an increase of initial permeate flux. Higher removal efficiency of cadmium from the aqueous solution was achieved using lower MWCO (smaller membrane pore size). Under optimized experimental condition, cadmium removal efficiency reached 74.6 % within an hour. Using MEUF-ACF hybrid process the removal efficiency of both cadmium and SDS was found to be over 90%.

Chromate Removal from Wastewater using Micellar Enhanced Ultrafiltration and Activated Carbon Fibre Processes; Validation of Experiment with Mathematical Equations

  • Bade, Rabindra;Lee, Seung-Hwan
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.98-104
    • /
    • 2008
  • In this study, chromate and cetylperidinium chloride (CPC) removal from artificial wastewater was monitored by using micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) adsorption hybrid processes. For the efficient chromate removal, molar concentration of the CPC should be five times that of chromate and it should be at least one critical micelle concentration (CMC). The MEUF was found to be effective in the chromate removal while ACF in the CPC adsorption to produce chromate and CPC free effluents. The chromate and CPC removal was 99.8% from MEUF-ACF process. Effluent chromate concentration was exponentially correlated with molar ratio of CPC to chromate and pH.

Iterative Regression Optimization of Two-Parameters in Micellar Liquid Chromatography (미셀 액체 크로마토그래피에서 두 가지 파라미터의 반복 회귀 최적화)

  • Kim, In-Whan;Kim, Sang-Tae
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.267-274
    • /
    • 1993
  • The iterative regression optimization strategy using two parameters is described and applied to the separation of amino acids and peptides by means of micellar liquid chromatography. The parameters examined are concentration of surfactant and 2-propanol. This approach results in a efficient optimization using a small number of initial experiments.

  • PDF

Shear-induced microstructure and rheology of cetylpyridinium chloride/sodium salicylate micellar solutions

  • Park, Dae-Geun;Kim, Won-Jong;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.143-149
    • /
    • 2000
  • In this article, we considered shear-induced microstructure and rheological behavior of micellar solutions of cationic surfactant, cetylpyridinium chloride (CPC) in the presence of a structure-forming additive, sodium salicylate (NaSal). Shear viscosity, shear moduli and flow birefringence were measured as functions of the surfactant and additive concentrations. In the presence of NaSal, the micellar solution exhibited the non-linear rheological behavior due to the formation of supramolecular structures when the molar ratio of NaSal to CPC exceeded a certain threshold value. Flow birefringence probed the change in micelle alignment under shear flow. At low shear rates, the flow birefringence increased as the shear rate increased. On the other hand, fluctuation of flow birefringence appeared from the shear rate near the onset of shear thickening, which was caused by shear-induced coagulation or aggregation. These results were confirmed by the SEM images of in situ gelified micelle structure through sol-gel route.

  • PDF

Comparison of different surfactant system for simultaneous removal of nitrate and phosphate using micellar-enhanced ultrafiltration

  • 김보경;백기태;김호정;이율리아;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.417-421
    • /
    • 2003
  • Three kinds of surfactant systems - cationic surfactant (system 1), combinition of two cationic surfactants (system 2), and combination of two cationic surfactant and non-ionic surfactant (system 3) - for the simultaneous removal of nitrate and phosphate by micellar-enhanced ultrafiltration (MEUF) were investigated. The highest removal efficiencies of nitrate and phosphate were observed in system 2, which were 90 % of nitrate and 72 % of phosphate. The COD of permeate in system 3 was the lowest, because the added non-ionic surfactant made critical micelle concentration (CMC) lower than that of other surfactant systems. In all systems, the flux decline was similar.

  • PDF