• Title/Summary/Keyword: MgO thin film

Search Result 297, Processing Time 0.025 seconds

Significant enhancement of critical current density by effective carbon-doping in MgB2 thin films

  • Ranot, Mahipal;Lee, O.Y.;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.12-15
    • /
    • 2013
  • The pure and carbon (C)-doped $MgB_2$ thin films were fabricated on $Al_2O_3$ (0001) substrates at a temperature of $650^{\circ}C$ by using hot-filament-assisted hybrid physical-chemical vapor deposition technique. The $T_c$ value for pure $MgB_2$ film is 38.5 K, while it is between 30 and 35 K for carbon-doped $MgB_2$ films. Expansion in c-axis lattice parameter was observed with increase in carbon doping concentration which is in contrast to carbon-doped $MgB_2$ single crystals. Significant enhancement in the critical current density was obtained for C-doped $MgB_2$ films as compared to the undoped $MgB_2$ film. This enhancement is most probably due to the incorporation of C into $MgB_2$ and the high density of grain boundaries, both help in the pinning of vortices and result in improved superconducting performance.

Effect of Prefiring Time on Epitaxy and crystallinity of Pb(Zr, Ti)O$_3$ Thin Films in Low Temperature Pyrolysis (저온도포열분해에 의해 제조된 Pb(Zr, Ti)O$_3$ 박막의 에피탁시와 결정화도에 미치는 전열처리 시간의 영향)

  • 황규석;이형민;김병훈
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.969-973
    • /
    • 1998
  • Pb(Zr, Ti)O3 (PZT) (Zr:Ti= 52: 48) thin films were prepared on MgO(100) substrates by dipping-py-rolysis process using metal naphthenates as starting materials. Thin films were fabricated by spin coating technique and the precursor films were prefired at 20$0^{\circ}C$ in air for 0.5, 1, 2, 3, and 24 h followed by final heat treatment at 75$0^{\circ}C$ for 30min. Film prefired for 24 h lost orientational properties and pole figure analysis showed the lost of the epitaxial relationship between the films and substrate while highly a/c-axis oriented thin films were obtained for the samples prefired for 1, 2, and 3h.

  • PDF

Inductively Coupled Plasma Reactive Ion Etching of MgO Thin Films Using a $CH_4$/Ar Plasma

  • Lee, Hwa-Won;Kim, Eun-Ho;Lee, Tae-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.77-77
    • /
    • 2011
  • These days, a growing demand for memory device is filled up with the flash memory and the dynamic random access memory (DRAM). Although DRAM is a reasonable solution for current demand, the universal novel memory with high density, high speed and nonvolatility, needs to be developed. Among various new memories, the magnetic random access memory (MRAM) device is considered as one of good candidate memories because of excellent features including high density, high speed, low operating power and nonvolatility. The etching of MTJ stack which is composed of magnetic materials and insulator such as MgO is one of the vital process for MRAM. Recently, MgO has attracted great interest in the MTJ stack as tunneling barrier layer for its high tunneling magnetoresistance values. For the successful realization of high density MRAM, the etching process of MgO thin films should be investigated. Until now, there were some works devoted to the investigations on etch characteristics of MgO thin films. Initially, ion milling was applied to the etching of MgO thin films. However, ion milling has many disadvantages such as sidewall redeposition and etching damage. High density plasma etching containing the magnetically enhanced reactive ion etching and high density reactive ion etching have been employed for the improvement of etching process. In this work, inductively coupled plasma reactive ion etching (ICPRIE) system was adopted for the improvement of etching process using MgO thin films and etching gas mixes of $CH_4$/Ar and $CH_4$/$O_2$/Ar have been employed. The etch rates are measured by a surface profilometer and etch profiles are observed using field emission scanning emission microscopy (FESEM). The effects of gas concentration and etch parameters such as coil rf power, dc-bias voltage to substrate, and gas pressure on etch characteristics will be systematically explored.

  • PDF

Effects of composition of preannealed Y-Ba-Cu-0 thin films deposited by sputtering on the superconducting properties and microstructure of post-annealed thin films (스퍼터링 증착된 Y-Ba-Cu-O계 박막의 열처리 전 조성이 열처리 후 박막의 초전도특성 및 미세구조에 미치는 영향)

  • Cho, Hae-Seok;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1991
  • YBCO films deposited on MgO(100) and Si(100) by rf-magnetron sputtering using stoichiometric single target were annealed under oxygen atmosphere at $880^{\circ}C$ for 1 hr. The microstructure and superconducting properties of YBCO thin films depended on the composition of pre-annealed thin films. Basal planesuperconducting particles grown on MgO(100) substrate had small and rod-like shade due to preferred orientation, while superconducting film grown on the basal plane-superconducting particles showed round-shape particles. If pre-annealed thin film had nonstoichiometric composition, liquid phase was formed during the heat treatment, which made it easy for particles to grow in the preferred orientation and thus to form textured structure. But the thin films with the textured structure did not show good superconducting properties, especially $T_c$, since the liquid phase transformed into second phase in the grain boundary during the cooling. The effect of the second phase on $T_{c, \;zero}$ was greater than that on $T_{c, \;on}$.

  • PDF

Substrate effects on the characteristics of $YBa_2Cu_3O_{7-x}$ thin films prepared by RF magnetron sputtering (RF마그네트론 스퍼터링법으로 제조한 $YBa_2Cu_3O_{7-x}$전도체 박막의 특성에 대한 기판의 영향)

  • 신현용;박창엽
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.6-12
    • /
    • 1995
  • High Tc superconducting YBa$_{2}$Cu$_{3}$$O_{7-x}$ thin films were prepared on various substrates by off-axis rf magnetron sputtering method to examine the substrate effects on the film structure and its R-T characteristics. The SEM analysis showed that the surface morphology of the grown YBa$_{2}$Cu$_{3}$O.sub 7-x/, film has different characteristic structure with different substrate used. The film on (100) SrTiO$_{3}$ substrate has critical current density of 3*10$^{5}$ A/cm$^{2}$ at 77K under zero magnetic field. The X-ray diffraction measurements revealed that the films on (100) SrTiO$_{3}$ substrate have mixed a-axis and c-axis normal to the substrate surface and the films on (100) MgO and ZrO$_{2}$/sapphire substrates have c-axis normal orientation to the substrate surface. However, YBa$_{2}$Cu$_{3}$$O_{7-x}$ films on (100) sapphire substrates showed no preferential orientation.ion.

  • PDF

Effect of Surface Improvement on Thin Film by In-Situ Laser Annealing Deposition (In-Situ Pulse Laser Annealing 증착에 의한 광학박막의 표면 개선 효과)

  • Lee, Se-Ho;Yu, Yeon-Serk
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • In-situ pulse laser (Nd-YAG, 2nd harmonics 532 nm) annealing used in physical vapor deposition of $MgF_2$, $SiO_2$ and ZnS thin films was shown to be effective in improving their surface roughness properties. Total integrated scattering (TIS) measurements of $MgF_2$ and $SiO_2$ samples deposited on glass substrates revealed that the laser irradiation of films at an energy of approximately $140\;mJ/cm^2$ at 532 nm with a repetition frequency of 10 Hz and pulse duration of 5 ns during the deposition resulted in total scatterings that were minimum. But in case of the ZnS samples, measurements revealed minimum total scattering at a laser energy of approximately $62\;mJ/cm^2$. Atomic Force Microscopy (AFM) has been used to evaluate the effect of pulse laser annealing on the surface roughness for thin film samples. The results were similar to the TIS measurements, indicating that surface roughness was decreased when the irradiated annealing pulse laser energy increased. But it also increased when the irradiated annealing pulse laser energy was over some limit that depended on the materials.

Analysis of structural properties of epitaxial BST thin films prepared by pulsed laser deposition (펄스형 레이저 증착법으로 제조된 에피탁시 BST 박막의 구조 분석)

  • 김상섭;제정호
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.355-360
    • /
    • 1998
  • Epitaxial $Ba_{0.5}Sr_{0.5}TiO_3$thin films of two different thickness (~250 $\AA$ and ~1340 $\AA$) on MgO(001) prepared by a pulsed laser deposition method were studied by synchroton x-ray scattering measurements. The film initially grew on MgO(001) with a cube-on-cube relationship, maintaining it during further growth. As the film grew, the surface of the film became rough significantly, but the interface between the film and the substrate seemed to have changed little. In the early stage, the film was highly strained in a tetragonal structure with the longer axis parallel to the surface normal direction. As the growth proceeded further, it was mostly relaxed to a cubic structure with the lattice parameter of the bulk value and the mosaic distribution improved significantly in both in-plane and out-of-plane directions.

  • PDF

A study on the electrical switching properties of oxide metal (산화금속의 전기적 스위칭 특성 연구)

  • Choi, Sung-Jai;Lee, Won-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.173-178
    • /
    • 2009
  • We have investigated the electrical properties of oxide metal thin film device. The device has been fabricated top-top electrode structure and its transport properties are measured in order to study the resistance change. Electrical properties with linear voltage sweep on a electrodes are used to show the variation of resistance of oxide metal thin film device. Fabricated oxide metal thin film device with MIM structure is changed from a low conductive Off-state to a high conductive On-state by the external linear voltage sweep. The $Si/SiO_2/MgO$ device is switched from a high resistance state to a low resistance state by forming. Consequently, we believe oxide metal is a promising material for a next-generation nonvolatile memory and other electrical applications.

  • PDF

PREPARATION AND CHARACTERIZATION ON THIN FILMS OF DOPED IRON OXIDE PHOTOSEMICONDUCTIVE ELECTRODES. (얇은막 산화철 광반도성 전극의 제조와 그 특성)

  • Kim, Il-Kwang;Kim, Yon-Geun;Park, Tae-Young;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.104-108
    • /
    • 1993
  • Thin films of MgO-doped and CaO-doped iron oxide were prepared y spray pyrolysis. The films were characterized b X-ray diffraction, scanning electron microscopy and voltammetric techniques. The photoelectrochemical behavior of thin film electrodes depended greatly on the doping level, sintering temperature, substrate temperature and added photosensitizing compounds in solution, showed p-type photoelectrochemical behavior, while the CaO-doped iron oxide thin films prepared at low temperature showed n-type photoelectrochemical behavior. This characteristic change was interpreted in terms of the surface structure change of the thin films and doping effect of metal oxide.

  • PDF

In-situ structural analysis during heating of an epitaxial $BaTiO_3$ thin film (에피탁시 $BaTiO_3$박막의 승온중 in-situ 구조분석)

  • 김상섭;제정호
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.111-115
    • /
    • 1999
  • The structural characteristics of an epitaxial $BaTiO_3$ film on MgO(001) grown by sputtering were studied as a function of temperature using in-situ, real time synchrotron x-ray scattering experiments. We found that the as-grown film was single c-domain but strained at room temperature and tetragonally distorted with the c-axis normal to the film surface. Interestingly, its lattice parameters were found to be expanded in both the in-plane and the out-of -plane directions, i.e. biaxially, comparing with those of a bulk $BaTiO_3$ . More importantly, as it was heated up to $600^{\circ}C$, the tetragonal structure was kept up through without and any phase transition, which is usually observed in other epitaxial ferroelectric thin films.

  • PDF