• 제목/요약/키워드: Mg-Zn-Y alloy

검색결과 239건 처리시간 0.037초

Effect of Powder Size of Mg-Zn-Y Alloy on the Consolidation

  • Kim, Taek-Soo;Chae, H.J.;Lee, J.K.;Jung, H.G.;Kim, Y.D.;Bae, J.C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1266-1267
    • /
    • 2006
  • [ $MgZn_{4.3}Y_{0.7}$ ] alloy powders were prepared using an industrial scale gas atomizer, followed by warm extrusion. The powders were almost spherical in shape. The microstructure of powders as atomized and bars as extruded was examined as a function of initial powder size distribution using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS) and X-ray Diffractometer (XRD). The grain sizes were decreased with extruding as well as decreasing the initial powder sizes. Both the ultimate strength and elongation were enhanced as the initial powder sizes were decreased.

  • PDF

Al-Zn-Mg-Sc 합금의 고온압출에 미치는 공정조건의 영향 분석 (Effect of Processing Condition on the Hot Extrusion of Al-Zn-Mg-Sc Alloy)

  • 김남용;김진호;염종택;이동근;임수근;박노광;김정한
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.143-147
    • /
    • 2006
  • Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmaster-Z and DEFORM-3D, respectively. The microstructure evolution during hot extrusion and post heat-treatment was investigated and deformation mechanisms were analyzed by constructing processing map. FE-simulation results show that the temperature difference between container and billet has considerable influence on the final shape of extruded T-shape bar. The relation between applied load and processing time was predicted by the FE-analysis as well as punch speed vs. stroke chart.

Al-Zn-Mg-Sc 합금의 고온압출에 미치는 공정조건의 영향 분석 (Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy)

  • 염종택;김남용;임수근;박노광;김정한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.202-205
    • /
    • 2005
  • Effect of processing condition on the hot extrusion of Al-Zn-Mg-Sc alloy was investigated. For this purpose, hot compression test and FE-simulation were conducted via Thermecmasteer-Z and DEFORM-3D, respectively. The microstructure evolution during hot extrusion and post heat-treatment was investigated and deformation mechanisms were analyzed by constructing processing map. FE-simulation results show that the temperature difference between container and billet has considerable influence on the final shape of extruded T-shape bar. The relation between applied load and processing time was predicted by the FE-analysis as well as punch speed vs. stroke chart.

  • PDF

급속응고 분말법으로 제조한 Al-Zn-Mg-Zr-Mn-Cu합금의 시효특성 (The Aging Characteristics of an RS-P/M Al-Zn-Mg- Zr-Mn-Cu Alloy)

  • 이갑호
    • 한국분말재료학회지
    • /
    • 제4권2호
    • /
    • pp.100-105
    • /
    • 1997
  • In this study the changes of the hardness and microstructures during aging at 120$^{\cire}C$ of an RS-P/M Al-5.6wt%Zn-2.0wt%Mg-1.3wt%Zr-1.0wt%Mn-0.25wt%Cu alloy were studied using a transmission electron microscopy. The hardness increased rapidly at early stage of aging and reached the maximun when the specimen was aged for 24 hr. The many irregular-shaped $Al_4Mn$ and rod-shaped $Al_6Mn$ dispersoids with 0.1-0.4 $\mu$m in length were observed in the as-extruded alloy. The dark particles with 2-3 nm in size were observed in aged specimen for 5hr and those are thought to be G.P.zones or precursor of $\eta'$ precipitates. In aged specimen for 24 hr, the $\eta'$ phases were distributed homogeneously within the matrix and the PFZ with 30-40 nm in width was observed along the grain boundary. With further aging, the width of PFZ increased and $\eta$ phases were also detected within the matrix.

  • PDF

Microstructure and Mechanical Properties of Mg-Li Powder by Hot Rolling Process

  • Choi, Jeong-Won;Kim, Yong-Ho;Kim, Jung-Han;Yoo, Hyo-Sang;Woo, Kee-Do;Kim, Ki-Beom;Son, Hyeon-Taek
    • 한국재료학회지
    • /
    • 제25권1호
    • /
    • pp.32-36
    • /
    • 2015
  • Hot rolling of Mg-6Zn-0.6Zr-0.4Ag-0.2Ca-(0, 8 wt%)Li powder was conducted at the temperature of $300^{\circ}C$ by putting the powder into the Cu pipe. The microstructure and mechanical properties of the samples were observed. Mg-6Zn-0.6Zr-0.4Ag-0.2Ca without Li element was consisted of ${\alpha}$ phase and precipitates. The microstructure of the 8 wt%Li containing alloy consisted of two phases (${\alpha}$-Mg phase and ${\beta}$-Li phase). In addition, $Mg_2Zn_3Li$ was formed in 8%Li added Mg-6Zn-0.6Zr-0.4Ag-0.2Ca alloy. By addition of the Li element, the non-basal planes were expanded to the rolling direction, which was different from the based Mg alloy without Li. The tensile strength was gradually decreased from 357.1 MPa to 264 MPa with increasing Li addition from 0% to 8%Li. However, the elongation of the alloys was remarkably increased from 10 % to 21% by addition of the Li element to 8%. It is clearly considered that the non-basal texture and ${\beta}$ phase contribute to the increase of elongation and formability.

급속응고 분말법으로 제조된 Mg97Zn1Y2 합금의 장주기 구조와 적층결함 (Long Period Structures and Stacking Faults in Rapidly Solidified Powder Metallurgy (RS P/M) Mg97Zn1Y2 Alloy)

  • 박은기;김우정;김택수;이갑호
    • 한국재료학회지
    • /
    • 제19권8호
    • /
    • pp.447-451
    • /
    • 2009
  • The long-period stacking order (LPSO) structures and stacking faults (SFs) in rapidly solidified powder metallurgy (RS P/M) $Mg_{97}Zn_1Y_2$ alloy were investigated by high resolution transmission electron microscopy (HRTEM) observations. The 18R-type LPSO structure with a stacking sequence of ACBCBCBACACACBABAB and a period of 4.86 nm was observed in the as-extruded RS P/M $Mg_{97}Zn_1Y_2$ alloy. After annealing at 773 K for 5 hr, the 18R-type LPSO structure was transformed to the 14H-type LPSO structure with a stacking sequence of ABABABACBCBCBC and a period of 3.64 nm. The 24R-type LPSO structure containing 24 atomic layers of ABABABABCACACACABCBCBCBC with period of 6.18 nm coexists with the 14H-type LPSO structure in the same grains. The LPSO structures contain intrinsic Type II SFs such as BCB/CABA and ABA/CBCB stacking sequences of a closely packed plane.