• Title/Summary/Keyword: Mg-Zn Ferrite

Search Result 19, Processing Time 0.029 seconds

Low Temperature Sintering Mg-Zn Ferrites (Mg-Zn Ferrites의 저온소결화)

  • Kwon Oh-Heung
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.8-12
    • /
    • 2003
  • According to the recent trend to raise the horizontal scan frequency to increase the image refinement of the High Definition TV and High Resolution Display, material with low core loss is required for the ferrite core for deflection yoke, which is secured even in the high frequency range. liking notice of the influence on the fine structure of Mg-Zn ferrite by the chemical com position and process, low temperature sintering was proceeded. Cu was added to the low loss Mg-Zn system ferrite. After select-ing MgO, ZnO, $Fe_2$$O_3$, CuO, MgO was substituted for CuO while varying the composition ratio. Then the sample was sintered for 3 hours between $980~1350^{\circ}C$ Magnetic permeability, power consumption, shrinkage rate, core loss were measured. The start-ing temperature to test the shrinkage of the sample was nearby $900^{\circ}C$, it increased according to the substitution process of Cu, and the firing temperature was lowered about $-50~-75^{\circ}C$ alongside of the process.

A Study on the Low-Temperature Sintering Characteristic of the Mg-Zn ferrite which added CuO (CuO를 첨가한 Mg-Zn 페라이트의 저온소결 특성에 관한 연구)

  • Kwon, Oh-Heung;Kim, Do-Hwan;Choi, Young-Ji
    • Resources Recycling
    • /
    • v.14 no.3
    • /
    • pp.63-67
    • /
    • 2005
  • As there are recent tendencies to raise horizontal frequencies so as to improve screen definition for high-quality TV and high definition display, ferrite core for deflective yokes requires materials with low coreloss in the areas of high frequencies. The researcher added CuO to low-loss Mg-Zn ferrite. After choosing MgO, ZnO, Fe$_2O_3$ and CuO, the researcher changed a ratio of composition, substituting MgO for CuO. These samples were sintered for three hours up to 980$^{\circ}C$~1350$^{\circ}C$. Measure magnetic permeability, electric loss, core loss and a rate of contraction.

Effect of the Addition of CuO and MgO on the magnetic characteristics of Mg-ZnFerrite (CuO 및 MgO 첨가가 Mg-Zn Ferrite의 자기적 특성에 미치는 효과)

  • Lee, Joon-Mo;Choi, Kyu-Man;Gwon, Hyeok-Sang;Lee, Yun-Sik;Lee, Ho-Jin;Lee, Sang-Hun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.495-496
    • /
    • 2008
  • The magnetic characteristics of Mg-Zn ferrite that was fired at $1150^{\circ}C$ for 1hour and sintered at $1250^{\circ}C$ for 3hours was examined. The composition ratio of the ferrite was changed after sintering. In that case the composition ratio of ${Fe_2}{O_3}$ was increased but that of CuO was decreased. When the addition quantity of CuO was 3.8 mole%, it's shrinkage rate had maximum value. Magnetic permeability was decreased as the addition rate of CuO was increased and MgO was decreased. When the composition rate of CuO was 2.3 mol% and MgO was 10.9 mol%, the firing density had maximum value. In case that CuO was 2.8mol% and MgO was 10.4mol%, PL had minimum value.

  • PDF

Low Temperature sintering Mg-Zn Ferrites (저손실 Mg-Zn 페라이트의 저온소결화)

  • 권오흥;최완준;최영지;김도환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.382-385
    • /
    • 2003
  • 본 논문에서는 최근 고품위 TV 및 고정세도 디스플레이용으로 화상의 정세도를 향상시키기 위해 수평주파수를 높이려는 움직임이 있어, 편향 요크용 페라이트 코아에는 고주파수 영역에 있어서도 코아로스가 낮은 재료가 요구되고 있는 실정이다. Mg-Zn 페라이트에 있어서 화학조성 및 프로세스가 미세구조에 미치는 영향에 착안하여 저온 소결화를 하였다. 저손실인 Mg-Zn계 Ferrite에 Cu를 첨가하였다. MgO, ZnO, Fe$_2$O$_3$, CuO를 선택한 후 조성비의 변화를 두며 CuO를 MgO로 치환하였다. 이 시료를 98$0^{\circ}C$~135$0^{\circ}C$까지 3시간 소결하였다. 측정은 투자율, 전력손실 수축율, 코아로스를 측정하였다. 시료의 수축율을 개시하는 온도는 90$0^{\circ}C$ 부근이며 Cu치환에 따라 수축율이 증가하였으며, Cu치환에 따라 소성온도가 약 -5$0^{\circ}C$~75$^{\circ}C$ 낮아졌다.

  • PDF

Variation of Magnetic Properties of Cu-Zn-Mg Ferrites with Various Compositions and Sintering Temperatures (Cu-Zn-Mg ferrite의 조성성분 및 소결온도에 따른 자기적 특성변화 연구)

  • Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.365-368
    • /
    • 2003
  • Small amounts of additives such as mol % 0.13 NiO and mol % 0.01 $CaCO_3$were added to Cu-Zn-Mg ferrites. Basic composition of the Cu-Zn-Mg ferrites was $Cu_{Cu}$X/$Fe_{0.054}$ /$Zn_{0.486}$$Mg_{0.407}$ $Fe_{1.946}$ $O_4$(group A) and $Cu_{0.263}$$Fe_{0.027}$ $Zn_{0.503}$ $Mg_{0.262}$ $Fe_{1.973}$ $O_4$(group B). Specimens were sintered at different temperatures (1010, 1030, $1050^{\circ}C$) for 2 hours in air followed by an air cooling. Then, effects of various composition and sintering temperatures on the microstructure and the magnetic properties such as inductions, coercive forces, and initial permeabilities of the Cu-Zn-Mg ferrites were investigated. The average grain size increased with the increase of sintering temperature. The magnetic properties obtained from the aforementioned Cu-Zn-Mg ferrite specimens were 1,724 gauss for the maximum induction, 1.0 oersted for the coercive force, and 802 for the initial permeability. These magnetic properties indicated that the specimens could be utilized as the core of IFT (intermediate frequency transformer) and antenna in the amplitude modulation.

Recycling of Spent Dry Batteries for Deflection Yoke Core Applications

  • Murase, Taku;Takahashi, Hiroyasu;Nomura, Takeshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.245-248
    • /
    • 2001
  • Nomura Kohsan Corp. is producing oxides, such as ZnMn$_2$O$_4$, ZnFe$_2$O$_4$, and ZnO, by burning the used dry manganese cells and by sorting out the remnant materials. It is possible to use the recycled materials of the spent dry batteries as the raw materials of deflection yoke cores. Making hish roasting temperature in the recycling system has an effect in reduction of the impurities. As a result, the loss of the cores using the recycled materials is lower. When using the recycled materials, it is required to add Mg (OH)$_2$. ZnO, and Fe$_2$O$_3$in order to rectify the composition of the MnMgZn ferrite for deflection yoke core applications. Furthermore, in order to disappear ZnMn$_2$O$_4$in the formation, it is necessary to control at higher calcining temperatures. The MnMgZn ferrite of using the recycled materials becomes Toss equivalent to the conventional material. TDK Corp. is manufacturing the deflection yoke cores from 1996 using the material recycled from the spent dry batteries.

  • PDF

Preparation of Nano-sized MgxNiyZn1-x-yFe2O4 by Ultrasonic Wet-Magnetic Separation Method (초음파 습식 자기분류법을 이용한 MgxNiyZn1-x-yFe2O4 나노입자 제조)

  • Gu, Moon Sun;Kwon, Hyuk Joo;Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.212-218
    • /
    • 2017
  • $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrite powders were prepared by self-propagating high temperature synthesis followed by classifying with an ultrasonic wet-magnetic separation unit to get high pure nano-sized particles. The $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrites were well formed by using several powders like iron, nickel oxide, zinc oxide and magnesium oxide at 0.1 MPa of oxygen pressure. The ultrasonic wet-magnetic separation of pre-mechanical milled ferrite powders resulted in producing the powders with average size of 800 nm. The addition of a surfactant during the wet-magnetic separation process improved productivity more than twice. The coercive force, maximum magnetization and residual magnetization of the $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ nano-powders with 800 nm size were 3651 A/m, $53.92Am^2/kg$ and $4.0Am^2/kg$, respectively.

Application of Ultrasonic Wet-Magnetic Separation Method to Prepare Nano-sized MgxNiyZn1-x-yFe2O4 (MgxNiyZn1-x-yFe2O4나노입자 제조를 위한 초음파 습식 자기분류법의 적용)

  • Gu, Mun-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.201.2-201.2
    • /
    • 2016
  • $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrite powders were prepared by self-propagating high temperature synthesis followed by classified by ultrasonic wet-magnetic separation method to get nano-sized particles with high purity. The $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrites were well formed by using several powders like iron, nickel oxide, zinc oxide and magnesium oxide at 0.1 MPa of oxygen pressure. The ultrasonic wet-magnetic separation of pre-mechanical milled ferrite powders produced the powders with average size of $3.7-0.8{\mu}m$. The addition of a surfactant during the separation process improved productivity more than twice. The coercive force, maximum magnetization and residual magnetization of the $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ nano-powders with 810 nm size were 45.89 Oe, 53.92 emu/gOe, 0.4 emu/Oe, respectively.

  • PDF

A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.5}$$-A_{0.1}$-$Zn_{0.4}$.${Fe_2}{O_4}$Ferrite-Rubber Composite by Heat-Treatment Temperature of ferrite (전파흡수체용 $Ni_{0.5}$$-A_{0.1}$-$Zn_{0.4}$.${Fe_2}{O_4}$의 열처리 온도에 따른 Ferrite-Rubber Composite의 전파흡수특성에 관한 연구)

  • 박연준;김동일;이창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.109-114
    • /
    • 2000
  • In this paper, we studied the relation between heat-treatment temperature of ferrite and electromagnetic wave absorbing properties of ferrite-rubber composite. The heat-treatment temperatures of ferrite are 1200 and 1300 $^{\circ}C$, 2 hr. As s result, it has been shown that the optimum heat-treatment temperature of ferrite for electromagnetic wave absorber are related to the chemical composition. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the control of heat-treatment temperature of ferrite.

  • PDF