• Title/Summary/Keyword: Mg-Ni

Search Result 943, Processing Time 0.03 seconds

Hydrogenation and Electrochemical Characteristics of Amorphous-nanostructured Mg-based Alloys

  • Gebert, A.;Khorkounov, B.;Schultz, L.
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.327-335
    • /
    • 2006
  • In the development of new hydrogen absorbing materials for a next generation of metal hydride electrodes for rechargeable batteries, metastable Mg-Ni-based compounds find currently special attention. Amor phous-nanocrystalline $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ alloys were produced by mechanical alloying and melt-spinning and characterized by means of XRD, TEM and DSC. On basis of mechanically alloyed Mg-Ni-Y powders, complex hydride electrodes were fabricated and their electrochemical behaviour in 6M KOH (pH=14,8) was investigated. The electrodes made from $Mg_{63}Ni_{30}Y_7$ powders, which were prepared under use of a SPEX shaker mill, with a major fraction of nanocrystalline phase reveal a higher electrochemical activity far hydrogen reduction and a higher maximum discharge capacity (247 mAh/g) than the electrodes from alloy powder with predominantly amorphous microstructure (216 mAh/g) obtained when using a Retsch planetary ball mill at low temperatures. Those discharge capacities are higher that those fur nanocrystalline $Mg_2Ni$ electrodes. However, the cyclic stability of those alloy powder electrodes was low. Therefore, fundamental stability studies were performed on $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ ribbon samples in the as-quenched state and after cathodic hydrogen charging by means of anodic and cathodic polarisation measurements. Gradual oxidation and dissolution of nickel governs the anodic behaviour before a passive state is attained. A stabilizing effect of higher fractions of yttrium in the alloy on the passivation was detected. During the cathodic hydrogen charging process the alloys exhibit a change in the surface state chemistry, i.e. an enrichment of nickel-species, causing preferential oxidation and dissolution during subsequent anodization. The effect of chemical pre-treatments in 1% HF and in $10\;mg/l\;YCl_3/1%\;H_2O_2$ solution on the surface degradation processes was investigated. A HF treatment can improve their anodic passivation behavior by inhibiting a preferential nickel oxidation-dissolution at low polarisation, whereas a $YCl_3/H_2O_2$ treatment has the opposite effect. Both pre-treatment methods lead to an enhancement of cathodically induced surface degradation processes.

Synthesis of Ethylamines for the Reductive Amination of Ethanol over Ni Catalysts: Effect of Supports (니켈 촉매상에서 에탄올의 환원성 아민화반응에 의한 에틸아민 제조 : 담체의 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.714-722
    • /
    • 2019
  • Catalysts were prepared by using incipient wetness impregnation method with 17 wt% Ni on a support ($SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, $SiO_2$, $TiO_2$, MgO) and the catalytic activity in the reductive amination of ethanol with ammonia in the presence of hydrogen was compared and evaluated. The catalysts used before and after the reaction were characterized using X-ray diffraction, nitrogen adsorption, ethanol-temperature programmed desorption (EtOH-TPD), isopropanol-temperature programmed desorption (IPA-TPD), and hydrogen chemisorption etc. In the case of preparing $ZrO_2$ and $Y_2O_3$ supports, the small amount of Si dissolution from the Pyrex reactor surface provoked the formation of mixed oxides $SiO_2-ZrO_2$ and $SiO_2-Y_2O_3$. Among the catalysts used, $Ni/SiO_2-Y_2O_3$ catalyst showed the best activity, and this good activity was closely related to the highest nickel dispersion, and low desorption temperature in EtOH-TPD and IPA-TPD. The low catalytic activity on Ni/MgO catalysts showed low activity due to the formation of NiO-MgO solid-solutions. In the case of $Ni/TiO_2$, the reactivity was low due to the low nickel metal phase due to strong metal-support interaction. In the case of using a support as $SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, and $SiO_2$, the selectivities of ethylamines and acetonitrile were not significantly different at similar ethanol conversion.

Synthesis and Properties of Amorphous Matrix Composites using Cu-based/Ni-based Amorphous Powders (Cu계 및 Ni계 비정질 합금 분말을 이용한 비정질기지 복합재의 제조 및 특성)

  • Kim Taek-Soo;Lee Jin-Kyu;Kim Hwi-Jun;Bae Jung-Chan
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.406-412
    • /
    • 2005
  • This work is to present a new synthesis of metallic glass (MG)/metallic glass (MG) composites using gas atomization and spark plasma sintering (SPS) processes. The MG powders of $Cu_{54}Ni_6Zr_{22}Ti_{18}$ (CuA) and $Ni_{59}Zr_{15}Ti_{13}Nb_7Si_3Sn_2Al_1$(NiA) as atomized consist of fully amorphous phases and present a different thermal behavior; $T_g$ (glass transition temperature) and $T_x$ (crystallization temperature) are 716K and 765K for the Cu base powder, but 836K and 890K for the Ni base ones, respectively. SPS process was used to consolidate the mixture of each amorphous powder, being $CuA/10\%NiA\;and\;NiA/10\%CuA$ in weight. The resultant phases were Cu crystalline dispersed NiA matrix composites as well as NiA phase dispersed CuA matrix composites, depending on the SPS temperatures. Effect of the second phases embedded in the MG matrix was discussed on the micro-structure and mechanical properties.

RF (Radio-Frequency) Thermal Plasma Synthesis of Ni-Based Nano Powders

  • Seo, Jun-Ho;Nam, Jun-Seok;Lee, Mi-Yeon;Kim, Jeong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.138-138
    • /
    • 2013
  • Ni-CeO2 및 Ni-MgO와 같이 Ni이 포함된 나노복합물질을 고주파 유도결합 플라즈마를 이용하여 합성하였다. 이를 위해, 먼저, 1~100 ${\mu}m$ 크기의 가상 Ni 입자와 고융점 세라믹 입자가 플라즈마 유동 내에서 겪는 열전달 과정을 수치해석을 통해 묘사하였다. 묘사 결과로부터, 완전 기화한 Ni 증기가, 채 기화하지 못하고 고체 형태로 남은 세라믹 입자 위에서 균일하게 응축된 형태를 갖는 Ni-세라믹 나노입자 합성을 예측하고, 실제 합성 실험을 25 kW 급 고주파 유도결합 플라즈마에 0.1~10 ${\mu}m$ 크기의 Ni, CeO2 및 MgO 분말을 주입하여 수행하였다. 마지막으로, 실험을 통해 합성된 Ni 계 복합나노물질에 대해, FE-SEM 및 TEM 사진 분석과 EDS 및 ICP-AES 성분 분석을 진행하고, 수치해석을 통해 예측된 결과와 비교 검토하였다.

  • PDF

Effect of NiO on Microstructure and Properties of PMN-PT-BT Ceramics Prepared by Mixed Oxide Method

  • Han, Kyoung-Ran;Jung, Jung-Woong;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.884-888
    • /
    • 2004
  • Effects of NiO were studied in aspects of dielectric properties and microstructure of $0.96(0.91Pb(Mg_{1/3}Nb_{2/3})O_3-0.09PbTiO_3)­0.04BaTiO_3$ (PMN-PT-BT, PBT). The PBT was prepared by a conventional mixed oxide method using $(MgCO_3)_4{\cdot}Mg(OH)_2$ instead of MgO through Lewis acid-base interaction. NiO was added in the range of 0.5 to $3.0\;wt\%$ as thermally decomposable $2NiCO_3{\cdot}3Ni(OH)_2$ and it seemed to enhance densification to a large extent below $1000^{\circ}C$. But all the systems gave rise to ceramics with almost same relative sintered density of 96% by sintering at $1000^{\circ}C$ for 2 h. But it turned out that the addition of NiO was detrimental to dielectric constant but beneficial to the loss of dielectric constant.

Electrical and Dielectric Characteristics of Zn-Pr-Co-Er-M(M=Ni, Mg, Cr) Oxides-Based Varistors (Zn-Pr-Co-Er-M(M=Ni, Mg, Cr)산화물계 바리스터의 전기적, 유전적 특성)

  • 남춘우;김명준
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.605-609
    • /
    • 2004
  • The microstructure, electrical and dielectric characteristics of ZnO varistors were investigated at various metal oxide (NiO, MgO, and Cr$_2$O$_3$) additives. The average grain size was increased with addition of NiO while that was decreased with addition of Cr$_2$O$_3$-Thereby, the varistor voltage was higher in Cr$_2$O$_3$-added composition. Among varistors, the varistor added with Cr$_2$O$_3$ exhibited the highest nonlinearity, with 40.5 in the nonlinear exponent and 2.7 ${\mu}$A in the leakage current and its dielectric dissipation factor was relatively low value of 0.0589.

Preparation of Nano-sized MgxNiyZn1-x-yFe2O4 by Ultrasonic Wet-Magnetic Separation Method (초음파 습식 자기분류법을 이용한 MgxNiyZn1-x-yFe2O4 나노입자 제조)

  • Gu, Moon Sun;Kwon, Hyuk Joo;Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.212-218
    • /
    • 2017
  • $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrite powders were prepared by self-propagating high temperature synthesis followed by classifying with an ultrasonic wet-magnetic separation unit to get high pure nano-sized particles. The $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrites were well formed by using several powders like iron, nickel oxide, zinc oxide and magnesium oxide at 0.1 MPa of oxygen pressure. The ultrasonic wet-magnetic separation of pre-mechanical milled ferrite powders resulted in producing the powders with average size of 800 nm. The addition of a surfactant during the wet-magnetic separation process improved productivity more than twice. The coercive force, maximum magnetization and residual magnetization of the $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ nano-powders with 800 nm size were 3651 A/m, $53.92Am^2/kg$ and $4.0Am^2/kg$, respectively.

Application of Ultrasonic Wet-Magnetic Separation Method to Prepare Nano-sized MgxNiyZn1-x-yFe2O4 (MgxNiyZn1-x-yFe2O4나노입자 제조를 위한 초음파 습식 자기분류법의 적용)

  • Gu, Mun-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.201.2-201.2
    • /
    • 2016
  • $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrite powders were prepared by self-propagating high temperature synthesis followed by classified by ultrasonic wet-magnetic separation method to get nano-sized particles with high purity. The $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ ferrites were well formed by using several powders like iron, nickel oxide, zinc oxide and magnesium oxide at 0.1 MPa of oxygen pressure. The ultrasonic wet-magnetic separation of pre-mechanical milled ferrite powders produced the powders with average size of $3.7-0.8{\mu}m$. The addition of a surfactant during the separation process improved productivity more than twice. The coercive force, maximum magnetization and residual magnetization of the $Mg_xNi_yZn_{1-x-y}Fe_2O_4$ nano-powders with 810 nm size were 45.89 Oe, 53.92 emu/gOe, 0.4 emu/Oe, respectively.

  • PDF

Effect of Trace Metallic Additives of Mg-Fe-X on Microstructure and Properties of Zn Electrodeposits (아연도금층의 조직 및 물성에 미치는 미량금속원소(Mg-Fe-X)의 복합첨가의 영향(II))

  • 예길촌;김대영;안덕수
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.99-109
    • /
    • 2004
  • The effect of trace metallic additives on microstructure, glossiness and hardness of Zinc electrodeposits was investigated by using sulfate bath and flow cell system. The preferred orientation of Zn deposits with Mg-Fe additives was (10$\ell$)+(002) mixed texture, while that of Zn deposits with Mg-Fe-Cr additives was ( $10\ell$). The preferred orientation of Zn deposits with Mg-Fe-X(X:Ni,Co) additives changed from ($10\ell$)+(002) to ($10\ell$) with increasing Mg additive from 5 to 10 g/$\ell$. The surface morphology of the Zinc deposits was closely related to the preferred orientation of the deposits. The glossiness of Zn deposits with Mg-Fe additives was similar to that of pure Zn deposit. The glossiness of Zn deposits with Mg-Fe-X(X:Ni,Cr) additives was lower than that of Zn deposits with Mg-Fe additives, while that of Zn deposits with Mg-Fe-Co additives was higher than that of Zn-Mg-Fe deposits. The hardness of Zn deposits with Mg-Fe-X(Ni,Co,Cr) increased with current density and amount of Mg additive. Hardness of Zn deposits was decreased and increased in comparison with Zn-Mg-Fe deposits for Mg-Fe-Co and Mg-Fe-Cr additives, respectively.

Welder's Exposure to Airborne Hexavalent Chromium and Nickel during Arc Welding in a Shipyard (모 조선업체 아크 용접 작업자의 공기중 6가 크롬 및 니켈 노출에 관한 연구)

  • Shin, Yong Chul;Yi, Gwang Yong;Lee, Na Roo;Oh, Se Min;Kang, Seong Kyu;Moon, Young Hahn;Lee, Ki Ra
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.2
    • /
    • pp.209-223
    • /
    • 1998
  • The aim of this study was to evaluate welders' exposure to hexavalent chromium (Cr(VI)) and nickel (Ni) during welding operations in a Korean shipyard. The airborne Cr(VI) and Ni concentrations were measured during metal inert gas (MIG) welding on mild and stainless steel, and manual metal arc (MMA) welding on mild steel. The geometric mean (GM) of Cr(VI) concentrations inside the welding helmet during MIG welding on mild steel were $0.0018mg/m^3$ inside a ship section, and $0.0015-0.0026mg/m^3$ at the welding shops. All of the personal breathing zone air samples were below the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value ($TLV^{(R)}$) of $0.01mg/m^3$. Conversely, eighty-eight percent(21 of 24) of the personal breathing zone air samples exceeded the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit of $0.001mg/m^3$. Ni was not detected on 20 of 23 air samples collected during MIG welding on mild steel. The three Ni samples above the limit of detection ranged from 0.015 to $0.044mg/m^3$. The GM of Cr(VI) concentrations during MMA welding on mild steel were $0.0013mg/m^3$, but Ni was not detected in the air samples during this operation. It is assumed that the airborne Cr(VI) and Ni during mild steel welding were derived from the base metals which contained about 0.03% Cr and 0.03% Ni. The GM of airborne total Cr, Cr(VI) and Ni concentrations during MIG welding on stainless steel were 4.02, 0.13 and $0.86mg/m^3$, respectively, and the levels of Cr(VI) and Ni were above the ACGIH-$TLV^{(R)}$. Cr(VI) comprised about 35.5% of the total chromium(Cr) from MIG welding on mild steel, and about 8.4% of total Cr from MIG welding on stainless steel. The ratios of Cr(VI) to total Cr were significantly different among welding shops. It was concluded that welders were exposed to high levels of Cr(VI) and Ni during welding on stainless steel, and were exposed to low levels of Cr(VI) even during welding on mild steel.

  • PDF