• 제목/요약/키워드: Mg-Cu-Y alloy

검색결과 161건 처리시간 0.024초

Galvanic Corrosion of AZ31 Mg Alloy Contacting with Copper

  • Phuong, Nguyen Van;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.151.1-151.1
    • /
    • 2017
  • This work studied the corrosion behavior of AZ31 Mg alloy galvanically coupled with Cu during immersion in 0.1 and 0.5 M NaCl solutions by in-situ observation and galvanic corrosion current measurement using a zero resistance ammeter. The corrosion behavior of AZ31 Mg alloy was also studied by salt spray test. The average galvanic corrosion density during 2 h immersion in 0.1 NaCl solution was found to decrease as an exponential function with increasing the surface area ratios between AZ31:Cu or with increasing the distance between AZ31 and Cu. The corrosion of electrodeposited Cu on AZ31 Mg alloy was concentrated at the area next to Cu (about 5 mm for immersion test and 2 mm for salt spray test) and pitting corrosion was accelerated at the area beyond the severely corroded area by the galvanic coupling effect.

  • PDF

Cu 및 Si첨가에 의한 Mg-Zn합금계의 입자미세화 및 시효경화 (Grain Refining and Age Hardening of Mg-Zn Alloys by Addition of Cu and Si)

  • 황진환;남태현;안인섭;김유경;허경철;허보영
    • 한국재료학회지
    • /
    • 제5권6호
    • /
    • pp.682-689
    • /
    • 1995
  • Mg-Zn합금계의 입자미세화를 위하여 0.5-6 wt.% 조성범위의 Cu 및 Si를 첨가하였다. 합 잉곳트는 4 $\times$ $10^{-4}$ Torr의 진공의 BN을 내벽에 바른 석영관내에서 제조하였다. 제조된 합금을 435$^{\circ}C$에서 8시간 용체화처리한 후 결정립크기와 경도를 측정하였다. 측정결과 Mg-6wt.%Zn합금의 입자미세효과는 Cu가 2wt.%첨가될때, Si은 1.5wt.%가 첨가될 때가 최적의 조건이었다. Mg-6wt.% Zn과 Mg-6wt.%Zn-2wt.%Cu 및 Mg-6wt.%Zn-1.5wt.%Si합금을 시효열처리하여 시효거동을 조사하였다. 입자미세화에 의한 경도증가효과는 Mg-Zn-Cu합금계에서 크게 나타났으며 시효에 의한 경도증가 효과는 Mg-Zn-또합금계에서 크게 나타났다.

  • PDF

저온 주조법을 응용한 Al-Zn-Mg-Cu 합금의 반응고 성형 (Semi-Solid Forming of Al-Zn-Mg-Cu Alloy Applying Low-Temperature Casting Process)

  • 김정민;김기태;정운재
    • 한국주조공학회지
    • /
    • 제22권2호
    • /
    • pp.82-88
    • /
    • 2002
  • Al-5.5Zn-2.5Mg-l.5Cu semi-solid slurry was prepared by cooling the liquid metal with a low superheat to a solid and liquid co-existing temperature. Relatively round solid particles could be obtained in the slurry through the simple process. The prepared slurry was deformed into the metallic mold by a press and the mechanical properties of obtained specimens were investigated. Mold filling ability of the alloy slurry was also investigated and compared with that of A356 alloy. Al-Zn-Mg-Cu alloy showed lower mold filling ability than A356 alloy probably because small amount of eutectic phase is present and the heat of fusion generated during solidification is smaller than that of A356 alloy.

Cu-5% Sn합금(合金)의 주조조직(鑄造組織)에 미치는 도형재(塗型材)의 영향(影響)에 관(關)한 연구(硏究) (Effect of Mold Coatings on the Macrostructures of Cu-5%Sn Alloy)

  • 최영승;최창옥
    • 한국주조공학회지
    • /
    • 제5권3호
    • /
    • pp.19-26
    • /
    • 1985
  • This study has been carried out to examine into wettability of Cu-5%Sn alloy in $Al_2O_3$, MgO, $SiO_2$ and graphite, respectively and investigated into the change in macrostructure of Cu-5%Sn alloy according to kind and mixing rate of mold-coating. The results obtained from the experiment are summerized as follows; 1. Cu Cu-5%Sn alloy, wettabilities of $Al_2O_3$ and MgO were good, on the other hand, wettabilities of $SiO_2$ and graphite were bad. 2. The fine equiaxed zone was created because of the role of $Al_2O_3$ and MgO as preferential nucleation sites. 3. Notwithstanding change of mixing rate of $SiO_2$ in mold coating the equixed zone was not created. 4. The area of equiaxed zone was varied according to mixing rate in the case of using $Al_2O_3$ and MgO in mold-coating.

  • PDF

Cu(Mg) alloy의 비저항에 영향을 미치는 인자에 대한 연구 (A study on the factors affecting Cu(Mg) alloy resistivity)

  • 조흥렬;조범석;이재갑;박원욱;이은구
    • 한국표면공학회지
    • /
    • 제32권6호
    • /
    • pp.695-702
    • /
    • 1999
  • We have explored the factors affecting the resistivity of Cu (Mg) alloy, which was prepared by sputtering. The results show that the resistivity is a function of Mg content, annealing temperature, annealing time, and Cu-alloy thickness. Addition of Mg to copper increases the resistivity through solute scattering. In addition, increasing Mg content promotes the interfacial reaction between Mg and SiO$_2$ to produce the free silicon and the generated free silicon dissolves into copper, resulting in a significant increase of resistivity. Furthermore, increasing oxidation temperature rapidly decreases the resistivity at the initial stage of oxidation and then continues to increase the resistivity to the saturation value with increasing oxidation time. The saturation value depends on the residual Mg content and the thickness of the alloy. TEM and AES analyses reveal that dense, uniform MgO grows to the limiting thickness of about $150\AA$. However, interfacial MgO does not show the limiting thickness, instead continues to grow until Mg is completely exhausted. From these facts, we proposed the maximum available Mg content needed to from the dense MgO on the surface and suppress the excessive interfacial reaction.

  • PDF

Mg-6Zn-xCu 합금의 열적 특성에 미치는 Cu 첨가의 영향 (Effect of Cu Addition on Thermal Properties of Mg-6Zn-xCu alloys)

  • 예대희;김현식;강민철;정해용
    • 한국주조공학회지
    • /
    • 제35권4호
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, Mg-Zn alloys are investigated in terms of their thermal properties after an addition of Cu. Al element is added to improve the mechanical properties and castability in general case. However, it was excluded here because it significantly decreases the thermal conductivity. On the other hand, Zn was added as a major element, which had less influence on reducing the conductivity and can complement the mechanical properties as well. Cu was also added, and it improved the heat transfer characteristics as the amount was increased. The composition ranges of Zn and Cu are 6 wt.% and 0~1.5 wt.%, respectively. Mg-6Zn-xCu alloy was prepared by a gravity casting method using a steel mold and then the thermal conductivity and the microstructure of the as-cast material were investigated. By measuring the density_(${\rho}$), specific heat_(Cp) and thermal diffusivity_(${\alpha}$), the thermal conductivity_(${\lambda}$) was calculated by the equation ${\lambda}={\rho}{\cdot}Cp{\cdot}{\alpha}$. As the amount of Cu increased in the Mg-6Zn-xCu alloy, the heat transfer characteristics were improved, resulting in a synergistic effect which is slow when the added Cu exceeds 1 wt.%. In order to investigate the relative thermal conductivity/emission of the Mg-6Zn-xCu alloy, AZ91 and AZ31 were experimentally evaluated and compared using a separate test equipment. As a result, the Mg-6Zn-1.5Cu alloy when compared to AZ91 showed improvements in the thermal conductivity ranging from 30 to 60% with a nearly 20% improvement in the thermal emission.

용탕 단조 Al-3.0 wt%Si 합금의 강도에 미치는 합금 원소 및 열처리 조건의 영향 (Effects of Alloying Element and Heat-Treatment Condition on the Strength of Squeeze-Casted Al-3.0 wt%Si Alloy)

  • 이학주;황재형;권해욱
    • 한국주조공학회지
    • /
    • 제26권6호
    • /
    • pp.249-257
    • /
    • 2006
  • The effects of alloying element and the condition of heat-treatment on the strength of squeeze-cast Al-3.0 wt%Si alloy were investigated. The strength of the alloy without grain refinement was increased with increase Cu content upto 3.0 wt% and rather decreased beyond that. The tensile strength of the alloy with grain refinement increased with Cu content upto 3.0 wt% and not changed beyond that. The strength of the alloy without grain refinement increased with the Mg content. The tensile strength with grain refinement increased with the Mg content upto 0.50 wt% and then decreased beyond that. The strength of the grain refined alloy increased by individual and simultaneous additions of Cu and Mg and the maximum strength was obtained with Al-3.0 wt%Si-4.5 wt%Cu-0.50 wt%Mg alloy. The optimum heat-treatment condition for this alloy was obtained.

Effect of Cu and Mg on Forging Property and Mechanical Behavior of Powder Forged Al-Si-Fe Based Alloy

  • Lee, Dong-Suk;Jung, Taek-Kyun;Kim, Mok-Soon;Kim, Won-Yong
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1000-1001
    • /
    • 2006
  • Two atomized alloy powders were pre-compacted by cold and subsequently hot forged at temperatures ranging from 653K to 845K. The addition of Cu and Mg causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, $Al_2Cu$ and $Al_2CuMg$ intermetallics appeared. The volume fraction of intermetallic dispersoids increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.

  • PDF

Al-Li-Cu-Mg-Zr 합금에 있어서 δ'상 조대화를 위한 Lithium의 확산계수 평가 (The Evaluation of Diffusivity of Lithium for Coarsening of δ' Precipitate in AI-Li-Cu-Mg-Zr Alloy)

  • 정동석;김은호;조현기
    • 열처리공학회지
    • /
    • 제7권1호
    • /
    • pp.17-24
    • /
    • 1994
  • The evaluation and analysis of diffusivity of lithium for coarsening and coarsening kinetics of ${\delta}^{\prime}$ precipitate in Al-Li-Cu-Mg-Zr alloy aged at $170^{\circ}C$ have been investigated by transmission electron microscopy. With ageing time, ${\delta}^{\prime}$ precipitate coaesened to followed $\bar{\gamma}{\propto}t^{1/3}$ and coarsening kinetics was found to be obeyed to the Lifshitz-Slyozov-Wagner(LSW) theory and diffusivity of lithium for coarsening of ${\delta}^{\prime}$ precipitate in Al-Li-Cu-Mg-Zr alloy was obtained to be $5.85{\times}10^{-17}{\sim}1.53{\times}10^{-16}$ by experimental coarsening rate constant and various coarsening kinetic theory. Diffusivity of lithium measured by using various model but MLSW and Tsumuraya (VI) et al. model in Al-Li-Cu-Mg-Zr alloy is similar to that calculated by the Costas's diffusivity equation. It was, therefore, suggested that additing to the Cu, Mg and Zr element in Al-Li system have no great effect on diiffusivity of lithium for coarsening of ${\delta}^{\prime}$ This suggest that in matrix.

  • PDF