• Title/Summary/Keyword: Mg-Al alloy

Search Result 628, Processing Time 0.027 seconds

Fracture Toughness and Slinding Wear Properties of ABOw/AC4CH by Binder Additives (ABOw/AC4CH의 바인더 종류에 따른 파괴인성 및 미끄럼마모 특성)

  • Park, Won-Jo;Jung, Jae-Wook;Choi, Yong-Bum;Lee, Kwung-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.373-378
    • /
    • 2002
  • Metal matrix composites have a great interest in recent years because high specific strength, high specific stiffness characteristics, and application ranges of the composites are extend to variety industry. In this paper, an investigation was performed on the plane strain fracture toughness and slinding wear properties of AC4CH alloy(Al-Si-Mg line) reinforced with 20wt% aluminum borate whisker expect one, which contained a inorganic binder($TiO_2$). the binder led to the formation of strengthen the whisker each other. The test of fracture toughness was using CT(half size) specimen of thickness 12.5mm, width 25mm. and test of slinding wear of using tribo a pin-on-disk machine and lubricant is used without paraffine 8.2CST at room temperature. As results, Fracture toughness $K_{IC}$ is $8.7MPa-m^{05}$ for ABOw/AC4CH, $9.28MPa-m^{05}$ for ABOw/AC4CH added $TiO_2$. but AC4CH alloy was violated the critical stipulated by ASTM standard for valid measurement of $K_{IC}$. In case of, it was performed $J_{IC}$ test instead of $K_{IC}$ based on ASTM E 1820.

  • PDF

Controlled Surface Functionalities of metals using Femtosecond Laser-induced Nano- and Micro-scale Surface Structures (펨토초 레이저 유도 나노 및 마이크로 구조물을 활용한 금속 표면 기능성 제어)

  • Taehoon Park;Hyo Soo Lee;Hai Joong Lee;Taek Yong Hwang
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • With femtosecond (fs) laser pulse irradiation on metals, various types of nano- and micro-scale structures can be naturally induced at the surface through laser-matter interaction. Two notable structures are laser-induced periodic surface structures (LIPSSs) and cone/spike structures, which are known to significantly modify the optical and physical properties of metal surfaces. In this work, we irradiate fs laser pulses onto various types of metals, cold-rolled steel, pickled & oiled steel, Fe-18Cr-8Ni alloy, Zn-Mg-Al alloy coated steel, and pure Cu which can be useful for precise molding and imprinting processes, and adjust the morphological profiles of LIPSSs and cone/spike structures for clear structural coloration and a larger range of surface wettability control, respectively, by changing the fluence of laser and the speed of raster scan. The periods of LIPSSs on metals used in our experiments are nearly independent of laser fluence. Accordingly, the structural coloration of the surface with LIPSSs can be optimized with the morphological profile of LIPSSs, controlled only by the speed of the raster scan once the laser fluence is determined for each metal sample. However, different from LIPSSs, we demonstrate that the morphological profiles of the cone/spike structures, including their size, shape, and density, can be manipulated with both the laser fluence and the raster scan speed to increase a change in the contact angle. By injection molding and imprinting processes, it is expected that fs laser-induced surface structures on metals can be replicated to the plastic surfaces and potentially beneficial to control the optical and wetting properties of the surface of injection molded and imprinted products.

Influence of Surface Roughness of Tools on the Friction Stir Welding Process

  • Hartmann, Michael;Bohm, Stefan;Schuddekopf, Sven
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.22-28
    • /
    • 2014
  • Most publications on friction stir welding describe phenomena or results with given process parameters like feed rate, rotation speed, angle and depth of penetration. But without a complete documentation of tool design, the results under the same process parameters are completely different. For this purpose, the Institute of Cutting and Joining Manufacturing Processes (tff), University of Kassel investigated the influence of tool roughness on the friction stir welding process. Therefore a defined surface finish was produced by turning and die sinking. As basis of comparison the constant parameters were rotation speed, feed rate, tilt angle and a heel plunge depth. Sound butt-welds were produced in aluminium alloy 6082 (AlMgSi1) with 1.5 mm sheet thickness with a turned reference tool with a surface of $Ra=0.575{\mu}m$ in position controlled mode. The surfaces are manufactured from a very fine to a very rough structure, classified by the VDI-classes with differences in the arithmetical mean roughness. It can be demonstrated with the help of temperature measures, that less heat is generated at the surfaces of the shoulder and the pin by the higher roughness due to lower active friction contact surface. This can also be seen in the resulting wormhole defects.

MAGNESIUM TWB PANEL WITH LASER WELDING FOR AUTO BODY ASSEMBLY (차체 제작을 위한 레이저용접 마그네슘 TWB 판넬)

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1312-1316
    • /
    • 2007
  • Strip casted and rolled magnesium sheet is become exiting material for car manufacturer, due to its better formability and specific strength compare with conventional extruded sheet. TWB technology was attractive for car body designer, because it saves the weight of the car without strength loss. In this study, the laser welding performance of magnesium sheet was investigated for Mg TWB panel manufacturing. The material was strip casted and rolled magnesium alloy sheet contains 3 wt% Al and 1 wt% Zn (AZ31). Lamp pumped Nd:YAG laser of 2kW was used and its laser light was delivered by optical fiber of 0.6mm core diameter to material surface with focusing optics of 200mm focal length for TWB welding. The microstructure of weld bead was investigated to check internal defects such as inclusion, porosity and cracks. Also mechanical properties and formability were evaluated for press forming of car body. For the results, there was no crack but inclusion or porosity on weld at some conditions.The tensile strength of weld was over 95% of base metal. Inner and outer panel of engine hood were press formed and assembled at elevated temperature.

  • PDF

Sliding Wear Behavior of Plasma Sprayed Zirconia Coatingagainst Silicon Carbide Ceramic Ball

  • Le Thuong Hien;Chae Young-Hun;Kim Seock Sam;Kim Bupmin;Yoon Sang-bo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.66-74
    • /
    • 2004
  • The sliding wear behavior of $ZrO_2-22wt\%MgO\;(MZ)\;and\;ZrO_2-8wt\%Y_2O_3\;(YZ)$ deposited on a casting aluminum alloy with bond layer (NiCrCoAlY) by plasma spray against an SiC ball was investigated under dry test conditions at room temperature. At all load conditions, the wear mechanisms of the MZ and the YZ coatings were almost the same. The wear mechanisms involved the forming of a smooth film by material transferred on the sliding surface and pullout. The wear rate of the MZ coating was less than that of the YZ coating. With an increase normal load the wear rate of the studied coatings increased. The SEM was used to examine the sliding surfaces and elucidate likely wear mechanisms. The EDX analysis of the worn surface indicated that material transfer was occurred from the SiC ball to the disk. It was suggested that the material transfer played an important role in the wear performance.

  • PDF

Microstructure Evolution of Semi Solid AZ31+(Ca) Magnesium Alloys during Reheating Process (Ca첨가 반응고 AZ31 마그네슘 합금의 재가열에 따른 미세조직 변화)

  • Kim, Hee-Kyung;Seong, Bong-Hak;Van, Guen-Ho;Kim, Dae-Hwan;Seong, Yeong-Rok;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • In this study, we are aimed to prevent grain growth of semi-solid AZ31 magnesium alloys during reheating process. The semi-solid AZ31+(Ca) billets were investigated by using metallographic analysis, X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy in order to elucidate the effect of Ca addition during reheating process. The grain growth of semi-solid AZ31+(Ca) billet was reduced with increasing Ca content during reheating. The grain size of AZ31+(Ca) billet decreased with increasing volume fraction of Al2Ca particles. The grain growth rate constant K calculated by Oswald ripening LSW theory in AZ31+1.5wt.% Ca billet was the lowest 129.

Development of Thixoextrusion Process for Light Alloys - Part 2. Thixoextrusion Process for Light Alloys (경량합금 반용융 압출 기술 개발 - Park 2. 반용융 압출 공정 기술)

  • Kim, Shae-K.;Yoon, Young-Ok;Jang, Dong-In;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.217-221
    • /
    • 2006
  • The main emphasis of this study was to utilize thixoextrusion process for improving extrudability of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy. The results of thixbextrusion experiments about microstructures and extrusion pressures were compared with conventional hot extrusion results. The maximum extrusion pressure of thixoextrusion was greatly decreased compared with that of conventional hot extrusion. It was pointed out that the extrusion temperature dependence of the maximum extrusion pressure was large and the influence of extrusion temperature on the improvement of extrudability was remarkable in thixoextrusion. This will contribute to extrudability in terms of extrusion pressure, which in turn means that shorter process time is required and smaller extrusion machine can be applied for the same operation. The elongated grains to extrusion direction were generally observed during conventional hot extrusion, while the thixoextruded microstructures were isotropic.

A Study on the Wear Characteristics of SiC Particle Dispersed Composites by Rheo-Compocasting Method (Rheo-compocasting법에 의한 SiC입자분산 복합재료의 마모특성에 관한 연구)

  • Kwak, Hyun-Man;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.238-247
    • /
    • 1993
  • Microstructure, hardness and wear characteristics of $SiC_p/Al-6.5wt%Si-1.7wt%Mg$ alloy composites fabricated by the method of rheo-compocasting and hot pressing are investigated in this study. The dispersion of SiC particles in the composites is homogeneous and the hardness improves as additional amount increases. The wear amount of the matrix metal increases highly as wear rates increase, for the wear mechanism changes from adhesive wear to melt wear, and the matrix metal was coated on the surface of revolving disc and its weight increases. In the 5vol% composites, Fe is adhered on the surface of specimen by the projection of the dispersed hard SiC particles which have net-work structure and the coating layer is about $300{\mu}m$. But in the composite more than 20vol%, the wear amount of composite decreases because the SiC particles which have superior hardness, wear resistance and heat resistance properties resist wear, the abrasive wear turn out predominant wear mechanism and so the wear amount of revolving disc increases.

  • PDF

Effect of Fabrication Processes on the Fatigue and Fracture Toughness of 7XXX Series Aluminum Forgings (7XXX계 단조재의 피로 및 파괴인성에 미치는 제조공정의 영향)

  • Lee, O.H.;Lim, J.K.;Song, K.H.;Son, Y.I.;Eun, I.S.;Shin, D.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.161-168
    • /
    • 1996
  • The purpose of this study is to investigate the effect of impurity level and fabrication processes on the strength, fracture toughness and fatigue resistance of 7075, 7050 and 7175 high strength aluminum forgings. It has been verified that plane strain fracture toughness and fatigue characteristics of a specially processed 7175S-T74 alloy is superior to a conventionally processed 7075-T6/T73, 7050-T74 and 7175-T74 alloys. These beneficial effects primarily arise from two view points, i.e., the effect of reducing the impurity level of iron and silicon has significantly diminished the size and volume fraction of second phase particles such as $Al_7Cu_2Fe$ and $Mg_2Si$. Futher reduction of the amount of nonequilibrium second phase particles has been observed by applying a special fabrication process.

  • PDF

Development of PCM Color Coated Steel Sheets with Excellent Antiviral and Antimicrobial Properties

  • Du-Hwan Jo;Seongil Kim;Jinkyun Roh;Doojin Paik;Myungsoo Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.139-144
    • /
    • 2024
  • Recently, due to the rapid spread and continuation of COVID-19, customer demand for health and hygiene has increased, requiring the development of new products that express antiviral and antibacterial properties. In particular, viruses are much smaller in size than bacteria and have a fast propagation speed, making it difficult to kill. POSCO has developed eco-friendly PCM color coated steel sheets with excellent antiviral properties by introducing inorganic composite materials to the color coating layer on the surface of Zn-Al-Mg alloy plated steels. The virus is not only destroyed by adsorption of metal ions released from the surface of the coating film, but is also further promoted by the generation of reactive oxygen species by the reaction of metal ions and moisture. As a result of evaluating the developed products under the International Standard Evaluation Act, the microbicidal activity was 99.9% for viruses, and 99.99% for bacteria and 0% fungi. In particular, excellent results were also shown in the durability evaluation for life cycle of the product. The developed product was applied as a wall of school classrooms and toilets and ducts for building air conditioning, resulting in excellent results. Developed products are being applied for construction and home appliances to practice POSCO's corporate citizenship.