• Title/Summary/Keyword: Mg alloy

Search Result 1,115, Processing Time 0.024 seconds

A Study on the Plastic Deformation and Fracture Behavior of Mg-Zn-Mn-(Ca) Alloys (Mg-Zn-Mn-(Ca)합금의 크리이프 소성변형 및 파단거동에 관한 연구)

  • Kang, D.M.;Park, S.C.;Kang, K.I.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.45-50
    • /
    • 2006
  • In this paper, creep tests of Mg-Zn-Mn and Mg-Zn-Mn-Ca alloy casted by mold under the temperature range of 473.00-573.00K, and the stress range of 23.42-87.00Mpa were done with the equipment of automatic controlled temperature and computer for data acquisition. The activation energies were obtained by relationship between creep rate and temperature, and the stress exponents were obtained by relationship between creep rate and stress. From the experiment results, the activation energies of Mg-Zn-Mn and Mg-Zn-Mn-Ca alloy were 149.87kJ/mol, 147.97kJ/mol, respectively, and the stress exponents of those alloy were 5.13, 5.59, respectively, under the temperature of 473.00-493.00K and the stress range of 62.43-78.00Mpa. And the activation energies of those alloy were 134.41kJ/mol, 129.22kJ/mol, respectively, and the stress exponent of those alloy were 3.48, 3.77, respectively, under the temperature of 553-573Mpa and the stress range of 23.42-39.00Mpa. Also the lifes of Mg-Zn-Mn-Ca alloy were higher than those of Mg-Zn-Mn alloy, and the results of SEM showed fracture surfaces under low temperature had smaller dimples than those under high temperature.

  • PDF

Effect of Zincate Treatment of As-Cast AZ91 Mg Alloy on Electrodeposition of Copper in a Copper Pyrophosphate Bath

  • Nguyen, Van Phuong;Park, Min-Sik;Yim, Chang Dong;You, Bong Sun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.401-407
    • /
    • 2016
  • In this work, effect of zincate treatment of AZ91 Mg alloy on the following electrodeposition of copper was examined in a non-cyanide bath containing pyrophosphate ions in view of surface morphology and adhesion of the electrodeposited copper layer. Without zincate treatment, the electrodeposited copper layer showed very porous structure and poor adhesion. On the other hand, the copper layer electrodeposited on the zincate-treated surface showed dense structure and good adhesion. The dissolution rate of AZ91 Mg alloy after the zincate treatment appeared to decrease about 40 times in the copper pyrophosphate bath, as compared to that of the surface without zincate treatment. The porous morphology and poor adhesion of a copper layer on the AZ91 Mg alloy surface without zincate treatment were attributed to small number of nucleation sites of copper because of rapid dissolution of the magnesium substrate in the pyrophosphate bath. Based on the experimental results, it is concluded that the zincate treatment to form a conducting and protecting layer on the AZ91 Mg alloy surface is essential for successful electrodeposition of a copper layer on AZ91 Mg alloy with good adhesion and dense structure in the copper pyrophosphate bath.

Effect of Deformation on Dynamic Recrystallization of an AZ31 Mg alloy (AZ31 합금의 동적 재결정에 미치는 변형 조건의 영향)

  • Kwon, Yong-Nam;Lee, Y.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.59-62
    • /
    • 2006
  • Mg alloys have drawn a huge attention in the field of transportation and consumer electronics industries since it is the lightest alloy which could be industrially applicable. Most Mg alloy components have been fabricated by casting method. However, there have been a lot of research activities on the wrought alloys and their plastic forming process recently. The deformation behavior of an AZ31 Mg alloy at the elevated temperature was examined firstly to find out the optimum plastic forming range in terms of temperature and strain rate. During high temperature deformation, AZ31 alloy is usually undergone the dynamic recrystallization which influence the deformation behavior in turn. In the present study, the effect of deformation on dynamic recrystallization of an AZ31 alloy was investigated to clarify the relation between the deformation and recrystallization. In an AZ31 alloy system, the dynamic recrystallization was found to occur continuously. Recrystallized grain size was dependent on the stress level.

  • PDF

A Study on the Characteristic of Gas Pore Formation in Lost Foam Casting of Mg alloy;Comparison with Al alloy (마그네슘 합금의 소실모형주조 시 기포형성 특성에 관한 연구;알루미늄 합금과 비교)

  • Shin, Seung-Ryoul;Han, Sang-Won;Lee, Kyong-Whoan
    • Journal of Korea Foundry Society
    • /
    • v.24 no.3
    • /
    • pp.165-174
    • /
    • 2004
  • The pore formation characteristic of Mg alloy during Lost Foam Casting(LFC) was investigated with reduced pressure test and real casting, which was compared with the results of previous work for Al alloy. Cast Mg alloys in LFC had much lower porosities in comparison with those of Al alloys. Also, the proper pouring temperature gave the minimum porosity like Al alloy although it was higher than that of Al alloys due to the worse fluidity of Mg alloy. The pore formation mechanism of Mg alloy in LFC was similar to that of AI alloy but the critical temperature showing the different mechanism is higher than that of Al alloy as much as $30{\sim}50^{\circ}C$. The result that Mg alloy in LFC had the lower porosity comparing with Al alloy was due to the extra solubility of hydrogen gas although the solubility of Al alloy was easily exceeded by the external sources like pyrolyzed polystyrene products. The mold evacuation gave the lower porosity due to the removal of polystyrene pyrolysis products, and reduced shrinkage defects. Also, there was a proper evacuation pressure that gave a porosity of almost 0vol%. But much higher vacuum degree than this proper pressure caused the severe entrapment of polymer pyrolysis products that gave the large porosity.

Effect of Cerium on the Microstructure and Room Temperature Tensile Properties of Mg-4Al-2Sn-1Si Alloys (Mg-4Al-2Sn-1Si 합금의 조직 및 상온 인장 특성에 미치는 Ce의 영향)

  • Kim, Jung-Hoon;Cho, Dae-Hyun;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.32 no.6
    • /
    • pp.289-295
    • /
    • 2012
  • Mg-Al-Sn-Si system alloy, as a promising cheap heat-resistant Mg alloy for automobile engine part, has been investigated. Refinement of microstructure and precipitation of thermally stable secondary phases are important goal for the design of heat-resistant Mg alloy. In this study, the effect of Ce on the microstructure and room temperature mechanical properties of Mg-Al-Sn-Si alloy was investigated. High thermally stable $Mg_2Si$ phases in Mg-Al-Sn-Si alloy is very useful intermetallic compound. However, the $Mg_2Si$ phases often result in poor mechanical properties due to the coarse chinese type $Mg_2Si$ phases. The experimental specimens were fabricated by fluxless melting under $CO_2+SF_6$ atmosphere and poured into the permanent pre-heated at $200^{\circ}C$. It was told that Ce addition can modify $Mg_2Si$ phases and refine microstructure and improve the tensile strength, yield strength and elongation.

Fabrication and hydrogen storage property of eutectic Mg-Ni based alloy powder (공정 Mg-Ni계 합금 분말의 제조 및 수소저장 특성)

  • Hong, Seong-Hyeon;Bae, Jong-Soo;Yim, Chang-Dong;Na, Young-Sang;Song, Myoung-Youp
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.174-180
    • /
    • 2006
  • The eutectic Mg-23.5%Ni alloy was casted by melting and solidification. The powders of Mg-23.5%Ni and (Mg-23.5%Ni)-10% iron oxide were prepared by mechanical grinding of casted Mg-Ni alloy and casted Mg-Ni alloy+oxide, respectively. As milling time increases, hydriding and dehydriding rates of Mg-Ni and Mg-Ni-oxide alloy powders increase. The additions of iron oxide to Mg-Ni alloy and Mg-Ni-oxide increase hydriding rates and slightly decrease dehydriding rates.

Effect of Al Addition on the Precipitation Behavior of a Binary Mg-Zn Alloy

  • Kim, Ye-Lim;Tezuka, Hiroyasu;Kobayashi, Equo;Sato, Tatsuo
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.111-117
    • /
    • 2012
  • The effect of Al addition on the precipitation behavior of a binary Mg-Zn alloy was investigated based on the changes in the morphology, distribution and element concentration of precipitates formed during aging treatment. The as-cast Mg-6.0 mass%Zn (Mg-6Zn) and Mg-6.0 mass%Zn-3.0 mass%Al (Al-added) were homogenized at 613 K for 48 h and at 673 K for 12 h; they were then solid solution treated at 673 K for 0.5 h and 1 h, respectively. The Mg-6Zn and Al-added alloys were aged at 403 K and 433 K. The peak hardness of the Al-added alloy was higher than that of the Mg-6Zn alloy at each aging temperature. Rod-like, plate-like, blocky, and lath-like precipitates were observed in the Al-added alloy aged at 433 K for 230.4 ks, although the rod-like and plate-like precipitates were observed in the TEM microstructure of the Mg-6Zn alloy aged at 433 K for 360 ks. Moreover, the precipitates in the Al-added alloy were refined and densely distributed compared with those in the Mg-6Zn alloy. The Cliff-Lorimer plots obtained by the EDS analysis of the rod-like ${\beta}_1^'$ and plate-like ${\beta}_2^'$ phases in the Al-added alloy peak aged at 433 K for 230.4 ks were examined. It was confirmed that the ${\beta}_2^'$ phases had higher concentration of solute Al atom than was present in the ${\beta}_1^'$ phases, indicating that the properties of precipitates can be changed by Al addition.

Mechanical Behavior and Microstructure Evolution during Semi-Solid Squeeze Cast Processing of Ignition-Proof Mg-Zn-Ca-Zr Alloy

  • Chang, Si-Young;Choi, Jung-Chul
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.502-509
    • /
    • 1997
  • The mechanical behavior and microstructural evolution in the ignition-proof Mg-Zn-Ca-Zr alloy produced by the semisolid squeeze casting are clarified and the mechanical properties are also compared with those of squeeze cast Mg-Zn-Ca-Zr alloy. The tensile strength and elongation increase slightly as the solid fraction depending on temperature decreases, while the 0.2% proof stress decreases. The size of primary crystal increases with increasing holding time. The tensile strength and 0.2% proof stress of the semi-solid squeeze cast Mg-Zn-Ca-Zr alloy decrease as the size of primary crystal increases, indicating the dependence of strength on the size of primary crystal. The elongation of the semi-solid squeeze cast Mg-Zn-Ca-Zr alloy is two times as large as the squeeze cast Mg-Zn-Ca-Zr alloy and the tensile strength is unchanged despite the growth of primary crystal, resulting from the refining of the melted ${\alpha}Mg$ phase and the brittle eutectic compound as well as the reduction of solidification shrinkage and porosities.

  • PDF

Heat Treatment of AZ91-5wt.%Sn Magnesium Alloy (AZ91-5wt.%Sn 마그네슘 합금의 열처리의 특성)

  • Kim, Dae-Hwan;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.37 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • The microstructure, electrical conductivity and hardness variation of an AZ91-5wt%Sn Mg alloy sample during a solid-solution and aging heat treatment were instigated by optical microscopy, scanning electron microscopy, X-ray diffraction and by Rockwell hardness techniques in this study. The XRD result shows that the main phases in the as-casted alloy are ${\alpha}$-Mg, $Mg_{17}Al_{12}$ and $Mg_2Sn$. From the SEM images of the AZ91-5wt%Sn Mg alloy after the solution treatment, the $Mg_{17}Al_{12}$ phases in the alloy were found to have dissolved into the matrix with an increase in the holding time during the solution treatment, but $Mg_2Sn$ phases were clearly observable. The highest peak hardness of the AZ91-5wt%Sn Mg alloy is 82HRE at an aging temperature of $200^{\circ}C$.

Charge-discharge Characteristic of the Mg-Ni Hydrogen Storage Alloy System (MgNi계 수소흡장합금의 충방전특성)

  • Oh, Myung-Hark;Chung, Won-Sub;Kim, In-Gon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.3
    • /
    • pp.177-184
    • /
    • 1999
  • The charge-discharge characteristics of the $Mg_2Ni-x$ wt.%Nd (x = 0~3) electrodes were investigated. The electrodes were prepared by the mechanical grinding of the induction-melted $Mg_2Ni$ alloy powders with Ni and/or Nd using planetary ball mill apparatus. The discharge capacity of the $Mg_2Ni$ alloy increased with the increase in the nickel content. The electrode possessing 100 wt.% nickel powder showed the initial capacity of 760 mAh/g and the capacity decay with the cycle number was less than that of the 55 wt.% nickel powder. The Nd was added to this composition. It was found that the $Mg_2Ni-100$ wt.%Ni -0.2 wt.%Nd alloy showed an excellent charge-discharge cycle characteristics compared with the other reported Mg-Ni alloy system. The discharge capacity was 400 mAh/g after 70 cycles. Such an improved cycle life seems to be attributed to the improvement in the corrosion characteristics of the alloy. The anodic polarization curve of the $Mg_2Ni-100$ wt.%Ni-0.2 wt.%Nd alloy exhibited better passivating behavior than that of the $Mg_2Ni-100$ wt.%Ni.

  • PDF