This paper presents the results of wave profile detection from video image using the Mexican hat function. The Mexican hat function has been extensively used in the field of signal processing to detect discontinuity in the images. The analysis was done on the numerical image and video images of waves that were taken in the small wave flume. The results show that the Mexican hat function is an excellent tool for wave profile detection.
This study explores the effect of mother wavelet in the bivariate wavelet analysis. A total of four mother wavelets (Bump, Mexican hat, Morlet, and Paul) which are frequently used in the related studies is selected. These mother wavelets are applied to several bivariate time series like white noise and sine curves with different periods, whose results are then compared and evaluated. Additionally, two real time series such as the arctic oscillation index (AOI) and the southern oscillation index (SOI) are analyzed to check if the results in the analysis of generated time series are consistent with those in the analysis of real time series. The results are summarized as follows. First, the Bump and Morlet mother wavelets are found to provide well-matched results with the theoretical predictions. On the other hand, the Mexican hat and Paul mother wavelets show rather short-periodic and long-periodic fluctuations, respectively. Second, the Mexican hat and Paul mother wavelets show rather high scale intervention, but rather small in the application of the Bump and Morlet mother wavelets. The so-called co-movement can be well detected in the application of Morlet and Paul mother wavelets. Especially, the Morlet mother wavelet clearly shows this characteristic. Based on these findings, it can be concluded that the Morlet mother wavelet can be a soft option in the bivariate wavelet analysis. Finally, the bivariate wavelet analysis of AOI and SOI data shows that their periodic components of about 2-4 years co-move regularly every about 20 years.
This study evaluated the effect of a mother wavelet in the wavelet analysis of various times series made by combining white noise and/or sine function. The result derived is also applied to short-memory arctic oscillation index (AOI) and long-memory southern oscillation index (SOI). This study, different from previous studies evaluating one or two mother wavelets, considers a total of four generally-used mother wavelets, Bump, Morlet, Paul, and Mexican Hat. Summarizing the results is as follows. First, the Bump mother wavelet is found to have some limitations to represent the unstationary behavior of the periodic components. Its application results are more or less the same as the spectrum analysis. On the other hand, the Morlet and Paul mother wavelets are found to represent the non-stationary behavior of the periodic components. Finally, the Mexican Hat mother wavelet is found to be too complicated to interpret. Additionally, it is also found that the application result of Paul mother wavelet can be inconsistent for some specific time series. As a result, the Morlet mother wavelet seems to be the most stable one for general applications, which is also assured by the recent trend that the Morlet mother wavelet is most frequently used in the wavelet analysis research.
Chandra, D. Rakesh;Kumari, Matam Sailaja;Sydulu, Maheswarapu;Grimaccia, F.;Mussetta, M.
Journal of Electrical Engineering and Technology
/
v.9
no.6
/
pp.1812-1821
/
2014
Wind has been a rapidly growing renewable power source for the last twenty years. Since wind behavior is chaotic in nature, its forecasting is not easy. At the same time, developing an accurate forecasting method is essential when wind farms are integrated into the power grid. In fact, wind speed forecasting tools can solve issues related to grid stability and reserve allocation. In this paper 30 hours ahead wind speed profile forecast is proposed using Adaptive Wavelet Neural Network (AWNN). The implemented AWNN uses a Mexican hat mother Wavelet, and Morlet Mother Wavelet for seven, eight and nine levels decompositions. For wind speed forecasting, the time series data on wind speed has been gathered from the National Renewable Energy Laboratory (NREL) website. In this work, hourly averaged 10-min wind speed data sets for the year 2004 in the Midwest ISO region (site number 7263) is taken for analysis. Data sets are normalized in the range of [-1, 1] to improve the training performance of forecasting models. Total 8760 samples were taken for this forecasting analysis. After the forecasting phase, statistical parameters are calculated to evaluate system accuracy, comparing different configurations.
Journal of the Korean Institute of Telematics and Electronics S
/
v.34S
no.1
/
pp.132-144
/
1997
The rotation-invariant pattern recognition filter using circular harmonic function of the wavelet transforme dsreference image by morlet, mexican-hat, and haar wavelt function is proposed. The rotated reference images, the images sililar to the reference image, and the images which are added by random noise are used for the inpt images, and in case of the input images with random noise, they are applied to the recognition after removing the random noise by the transformed moving average method with proper thresholding value and window size. The proposed optical wavelet circular harmonic matched filter (WCHMF) is a type of the matche dfilter, so that it can be applied to the 4f vander lugt optical correlation system. SNR and discrimination capability of the proposed filter are compared with those of the conventional HF, the POCHF, and the BPOCHF. The proper wavelet function for the reference image used in this paper is achieved by applying morlet, mexican-hat, and harr wavelet function ot the proposed filter, and the proposed filter has good SNR and discrimination capability with rotation-invariance in case of the morlet wavelet function.
A wavelet analysis in a field of analytics is to create a reconstruction theorem of Plancherel form. And a series of wavelet is to create a discrete is to create a discrete reconstruction theorem for a frame theory and a multiresolution analysis theory. As a generation of reconstruction theorem, a wavelet correspond to it is generated. That is to be like a basic wavelet which is satisfied an admissibility condition in CWT and a Daubechies wavelet using MRA in wavelet series and a Meyer wavelet using a frame theory. In this paper, we discover a discrete reconstruction theorem which is superior to a conventional discrete reconstruction theorem by extending admissibility condition used in CWT and develop a New $L^1$-wavelet group. A new $L^1$-wavelet is applied to a signal reconstruction and a signal analysis in time-frequency region.
International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
/
v.6
no.1
/
pp.1-6
/
2003
This study presents the results of series of studies, which are mainly devoted to the application of wavelet transforms to various problems in ocean engineering. Both continuous and discrete wavelet transforms were used. These studies attempted to solve detection of wave directionality, detection of wave profile, and decoupling of the rolling component from free roll decay tests. The results of these analysis, using wavelet transform, demonstrated that the wavelet transform can be a useful tool in analyzing many problems in the filed of ocean engineering.
This study presents the results of series of studies, which are mainly devoted to the application of wavelet transforms to various problems in ocean engineering. Both continuous and discrete wavelet transforms were used. These studies attempted to solve detection of wave directionality, detection of wave profile, and decoupling of the rolling component from free roll decay tests. The results of these analysis, using wavelet transform, demonstrated that the wavelet transform can be a useful tool in analyzing many problems in the filed of ocean engineering.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2001.11b
/
pp.1182-1188
/
2001
The objective of this paper is to show the effectiveness of the wavelet transform by means of its capability to estimate the Lipschitz exponent. In particular, we show that the magnitude of the Lipschitz exponent can be used as a useful tool estimating the damage extent. An effective method based on the Lipschitz exponent is proposed and we present the results investigated both numerically and experimentally. The continuous wavelet transform by a Mexican hat wavelet having two vanishing moments is utilized for the estimation of the Lipschitz exponent.
Lee, Hyunwook;Song, Sunguk;Zhu, Ju Hua;Lee, Munseok;Yoo, Chulsang
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.259-259
/
2019
시계열 자료들을 분석하고자 하는 경우 자료가 정상성(stationarity)을 만족하는 경우는 드물다. 특히 계절성을 제거한 자료들에서는 정량화하기 어려운 주기성이 많이 관찰된다. 즉, 어떤 특정지역에서 나타나는 현상이 다른 기상 현상에 영향을 미칠 것은 자명한 일이나 그 관련성이 선형(linearity)일 가능성은 극히 드물다. 따라서 그들 사이의 관련성이 선형성에 근거한 지표들로 정량화되어야 한다. 이러한 문제점을 해결하기 위해서 다양한 방법이 사용되며 그중에서 웨이블릿 분석을 통해 본 연구를 진행하였다. 웨이블릿 변환(wavelet transforms)은 특수한 함수의 집합으로 구성되어 기존 웨이블릿 신호의 분석을 위해 사용되는 방법이다. 이 변환은 푸리에 변환에서 변형된 방법으로 특정한 기저 함수(base function)를 이용하여 기존의 시계열 자료를 주파수로 바꾸는 변환이다. 웨이블릿 변환에서 기저 함수를 모 웨이블릿이라고 하며 이를 천이, 확대 및 축소 과정을 통해 주파수를 구성한다. 웨이블릿 분석은 모 웨이블릿을 분해하고 재결합하여 시계열 분석을 할 수 있다. 모 웨이블릿 함수에는 Haar, Daubechies, Coiflets, Symlets, Morlet, Mexican Hat, Meyer 등의 여러 가지 종류의 모 웨이블릿 함수가 있으며 모 웨이블릿이 달라지면 결과가 다르게 나타난다. 기존에는 Morlet 웨이블릿을 주로 이용하여 주파수분석에 사용하여 결과를 도출하였다. 그리고 시계열 자료는 크게 백색잡음(White Noise), 장기기억(Long Term Memory), 단기기억(Short Term Memory)으로 나뉜다. 각 시계열 자료의 종류에 따라 임의의 시계열 자료를 산정하여 그에 따른 웨이블릿 분석을 통해 모 웨이블릿의 특성을 도출하였다. 본 연구에서는 웨이블릿 분석을 통해 시계열 자료의 최적 모 웨이블릿을 결정하고자 남방진동지수(SOI), 북극진동지수(AOI)의 자료를 이용하여 웨이블릿 분석을 시도하였다. 웨이블릿 분석은 모 웨이블릿에 따라 달라지는 결과를 토대로 분석하였으며 이를 정상성과 지속성에 따라 분류된 시계열에 적용하여 최적 모 웨이블릿을 결정하고자 하였다. 본 연구에서는 임의의 시계열 자료에서 설정한 최적의 모 웨이블릿을 AOI와 SOI와 같은 실제 시계열 자료에 대입하여 분석을 진행하였다. 본 연구에서는 시계열 자료의 종류를 구분하고 자료의 특성에 따라 가장 적합한 모 웨이블릿을 구하고자 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.