• 제목/요약/키워드: Methyltransferase

검색결과 299건 처리시간 0.026초

Two Distinct Isozymes of Repair Protein Carboxyl O-Methyltransferase from Porcine Brain

  • Park, In-Ho;Son, Min-Sik;Son, Young-Jin;Moon, Hyung-In;Han, Jeung-Whan;Lee, Hyang-Woo;Hong, Sung-Youl
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.299-305
    • /
    • 1999
  • Protein carboxyl O-methyltransferase (PCMT) catalyzes the transfer of a methyl group from Sadenosyl-L-methionine to free carboxyl groups of methyl-accepting substrate proteins. Two isozymes were separated by DEAE-Sephacel chromatography from porcine brain cytosol and designated PCMT I and II. Isozymes I and II were further purified by adenosyl homocysteine-Sepharose 4B and Superose HR 12 chromatography. The molecular weights of the purified PCMT I and II were determined by mass spectrometry to be 20,138 Da and 25,574 Da, respectively. The two enzymes displayed different isoelectric points; 7.9 for PCMT I and 5.3 for PCMT II. Isozymes I and II exhibited similar substrate specificities when tested with various methyl-accepting proteins. Myelin basic protein, a component of myelinated neurons, was found to be an excellent methyl-accepting substrate for both PCMT isozymes with different $K_m$ values, $21.1\;{\mu}M$ for PCMT I and $10.6\;{\mu}M$ for PCMT II. The PCMT activity and methyl-accepting capacity displayed similar distribution in the various brain regions with an exception of the lower values in the cerebellum. The overall distribution may relate to a general function of protein repair by PCMT in the brain.

  • PDF

The role of protein arginine-methyltransferase 1 in gliomagenesis

  • Wang, Shan;Tan, Xiaochao;Yang, Bin;Yin, Bin;Yuan, Jiangang;Qiang, Boqin;Peng, Xiaozhong
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.470-475
    • /
    • 2012
  • Protein arginine methyltransferase 1 (PRMT1), a type-I arginine methyltransferase, has been implicated in diverse cellular events. We have focused on the role of PRMT1 in gliomagenesis. In this study, we showed that PRMT1 expression was up-regulated in glioma tissues and cell lines compared with normal brain tissues. The knock-down of PRMT1 resulted in an arrest in the G1-S phase of the cell cycle, proliferation inhibition and apoptosis induction in four glioma cell lines (T98G, U87MG, U251, and A172). Moreover, an in vivo study confirmed that the tumor growth in nude mouse xenografts was significantly decreased in the RNAi-PRMT1 group. Additionally, we found that the level of the asymmetric dimethylated modification of H4R3, a substrate of PRMT1, was higher in glioma cells than in normal brain tissues and decreased after PRMT1 knock-down. Our data suggest a potential role for PRMT1 as a novel biomarker of and therapeutic target in gliomas.

Putative association of DNA methyltransferase 1 (DNMT1) polymorphisms with clearance of HBV infection

  • Chun, Ji-Yong;Bae, Joon-Seol;Park, Tae-June;Kim, Jason-Y.;Park, Byung-Lae;Cheong, Hyun-Sub;Lee, Hyo-Suk;Kim, Yoon-Jun;Shin, Hyoung-Doo
    • BMB Reports
    • /
    • 제42권12호
    • /
    • pp.834-839
    • /
    • 2009
  • DNA methyltransferase (DNMT) 1 is the key enzyme responsible for DNA methylation, which often occurs in CpG islands located near the regulatory regions of genes and affects transcription of specific genes. In this study, we examined the possible association of DNMT1 polymorphisms with HBV clearance and the risk of hepatocellular carcinoma (HCC). Seven common polymorphic sites were selected by considering their allele frequencies, haplotype-tagging status and LDs for genotyping in larger-scale subjects (n = 1,100). Statistical analysis demonstrated that two intron polymorphisms of DNMT1, +34542G > C and +38565G > T, showed significant association with HBV clearance in a co-dominant model (OR = 1.30, $P^{corr}$ = 0.03) and co- dominant/recessive model (OR = 1.34-1.74, $P^{corr}$ = 0.01-0.03), respectively. These results suggest that two intron polymorphisms of DNMT1, +34542G > C and +38565G > T, might affect HBV clearance.

Hepatitis E Virus Methyltransferase Inhibits Type I Interferon Induction by Targeting RIG-I

  • Kang, Sangmin;Choi, Changsun;Choi, Insoo;Han, Kwi-Nam;Roh, Seong Woon;Choi, Jongsun;Kwon, Joseph;Park, Mi-Kyung;Kim, Seong-Jun;Myoung, Jinjong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1554-1562
    • /
    • 2018
  • The type I interferons (IFNs) play a vital role in activation of innate immunity in response to viral infection. Accordingly, viruses have evolved to employ various survival strategies to evade innate immune responses induced by type I IFNs. For example, hepatitis E virus (HEV) encoded papain-like cysteine protease (PCP) has been shown to inhibit IFN activation signaling by suppressing K63-linked de-ubiquitination of retinoic acid-inducible gene I (RIG-I) and TANK-binding kinase 1 (TBK1), thus effectively inhibiting down-stream activation of IFN signaling. In the present study, we demonstrated that HEV inhibits polyinosinic-polycytidylic acid (poly(I:C))-induced $IFN-{\beta}$ transcriptional induction. Moreover, by using reporter assay with individual HEV-encoded gene, we showed that HEV methyltransferase (MeT), a non-structural protein, significantly decreases RIG-I-induced $IFN-{\beta}$ induction and $NF-{\kappa}B$ signaling activities in a dose-dependent manner. Taken together, we report here that MeT, along with PCP, is responsible for the inhibition of RIG-I-induced activation of type I IFNs, expanding the list of HEV-encoded antagonists of the host innate immunity.

Is catechol-o-methyltransferase gene polymorphism a risk factor in the development of premenstrual syndrome?

  • Deveci, Esma Ozturk;Incebiyik, Adnan;Selek, Salih;Camuzcuoglu, Aysun;Hilali, Nese Gul;Camuzcuoglu, Hakan;Erdal, Mehmet Emin;Vural, Mehmet
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제41권2호
    • /
    • pp.62-67
    • /
    • 2014
  • Objective: The objective of this study was to investigate whether there was a correlation between catechol-o-methyltransferase (COMT) gene polymorphism, which is believed to play a role in the etiology of psychotic disorders, and premenstrual syndrome (PMS). Methods: Fifty-three women with regular menstrual cycles, aged between 18 and 46 years and diagnosed with PMS according to the American Congress of Obstetrics and Gynecology criteria were included in this study as the study group, and 53 healthy women having no health problems were selected as the controls. Venous blood was collected from all patients included in the study and kept at $-18^{\circ}C$ prior to analysis. Results: There was no significant difference between the groups in terms of demographic features such as age, body mass index, number of pregnancies, parity, and number of children. No statistically significant difference was observed in terms of COMT gene polymorphism (p=0.61) between women in the PMS and the control groups. However, a significant difference was found between arthralgia, which is an indicator of PMS, and low-enzyme activity COMT gene (Met/Met) polymorphism (p=0.04). Conclusion: These results suggested that there was no significant relationship between PMS and COMT gene polymorphism. Since we could not find a direct correlation between the COMT gene polymorphism and PMS, further studies including alternative neurotransmitter pathways are needed to find an effective treatment for this disease.

조직공학 재생골을 위한 연구에서 사람 골수 기원 간엽줄기세포의 나이에 따른 조골세포 분화능에 관한 연구 (Osteoblast differentiation of human bone marrow stromal cells (hBMSC) according to age for bone tissue engineering)

  • 송진아;류현모;최진영
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권4호
    • /
    • pp.243-249
    • /
    • 2010
  • Tissue engineered bone (TEB) can replace an autogenous bone graft requiring an secondary operation site as well as avoid complications like inflammation or infection from xenogenic or synthetic bone graft. Adult mesenchymal stem cells (MSC) for TEB are considered to have various ranges of differentiation capacity or multipotency by the donor site and age. This study examined the effect of age on proliferation capacity, differentiation capacity and bone morphogenetic protein-2 (BMP-2) responsiveness of human bone marrow stromal cells (hBMSC) according to the age. In addition, to evaluate the effect on enhancement for osteoblast differentiation, the hBMSC were treated with Trichostatin A (TSA) and 5-Azacitidine (5-AZC) which was HDAC inhibitors and methyltransferase inhibitors respectively affecting chromatin remodeling temporarily and reversibly. The young and old group of hBMSC obtained from the iliac crest from total 9 healthy patients, showed similar proliferation capacity. Cell surface markers such as CD34, CD45, CD90 and CD105 showed uniform expression regardless of age. However, the young group showed more prominent transdifferentiation capacity with adipogenic differentiation. The osteoblast differentiation capacity or BMP responsiveness was low and similar between young and old group. TSA and 5-AZC showed potential for enhancing the BMP effect on osteoblast differentiation by increasing the expression level of osteogenic master gene, such as DLX5, ALP. More study will be needed to determine the positive effect of the reversible function of HDAC inhibitors or methyltransferase inhibitors on enhancing the low osteoblast differentiation capacity of hBMSC.

Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation

  • Dung, To Thi Mai;Yi, Young-Su;Heo, Jieun;Yang, Woo Seok;Kim, Ji Hye;Kim, Han Gyung;Park, Jae Gwang;Yoo, Byong Chul;Cho, Jae Youl;Hong, Sungyoul
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.437-442
    • /
    • 2016
  • We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways.