• 제목/요약/키워드: Methylophaga

검색결과 11건 처리시간 0.027초

Purification, Characterization, and Cloning of Trimethylamine Dehydrogenase from Methylophaga sp. Strain SK1

  • Kim, Hee-Gon;Kim, Yan;Lim, Heon-Man;Shin, Hyun-Jae;Kim, Si-Wouk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권4호
    • /
    • pp.337-343
    • /
    • 2006
  • Trimethylamine dehydrogenase (TMADH, EC 1.5.99.7), an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde, was purified from Methylophaga sp. strain SK1. The active TMADH was purified 12.3-fold through three purification steps. The optimal pH and temperature for enzyme activity was determined to be 8.5 and $55^{\circ}C$, respectively. The $V_{max}\;and\;K_m$ values were 7.9 nmol/min/mg protein and 1.5 mM. A genomic DNA of 2,983 bp from Methylophaga sp. strain SK1 was cloned, and DNA sequencing revealed the open reading frame (ORF) of the gene coding for TMADH. The ORF contained 728 amino acids with extensive identity (82%) to that of Methylophilus methylotrophus $W_3A_1$.

Characterization of Methylophaga sp. strain SK1 Cytochrome $c_L$ Expressed in Escherichia coli

  • Kim, Hee-Gon;Phan, Trongnhat;Jang, Tae-Sa;Koh, Moon-Joo;Kim, Si-Wouk
    • Journal of Microbiology
    • /
    • 제43권6호
    • /
    • pp.499-502
    • /
    • 2005
  • Methylophaga sp. strain SK1 is a new restricted facultative methanol-oxidizing bacterium that was isolated from seawater. The aim of this study was to characterize the electron carriers involved in the methanol oxidation process in Methylophaga sp. strain SK1. The gene encoding cytochrome $c_L$ (mxaG) was cloned and the recombinant gene was expressed in Escherichia coli $DH5\alpha$ under strict anaerobic conditions. The recombinant cytochrome $c_L$ had the same molecular weight and absorption spectra as the wild-type cytochrome $c_L$ both in the reduced and oxidized forms. The electron flow rate from methanol dehydrogenase (MDH) to the recombinant cytochrome $c_L$ was similar to that from MDH to the wild-type cytochrome $c_L$. These results suggest that recombinant cytochrome $c_L$ acts as a physiological primary electron acceptor for MDH.

Methylophaga aminosulfidovorans SKI bfmo 오페론의 클로닝 및 구조 분석 (Cloning and Structural Analysis of bfmo Operon in Methylophaga aminosulfidovorans SK1)

  • 임현숙;구재환;김리현;김시욱;조은희
    • 미생물학회지
    • /
    • 제41권1호
    • /
    • pp.1-7
    • /
    • 2005
  • Methylophaga aminosulfidovorans SK1 (KCTC 10323 BP)은 단일 탄소원, 질소원 그리고 에너지원으로 난분해성 화합물인 트리메틸아민을 이용할 수 있다. M. aminosulfidovorans SK1는 진핵세포의 flavin-containing monooxygenase와 유사한 유전자(bFMO)를 지니고 있으며 대장균에서 발현된 재조합 단백질은 강력한 트리메틸아민 산화활성을 보인다. 본 연구에서는 bEMO의 기능과 조절 메커니즘을 연구하기 위하여 bfmo의 상단부 및 하단부 유전자의 염기서열을 결정하였다. bfmo 상단부의 세 개의 열린해독틀은 잘 보존된 nitrate/nitrite response regulators와 methyl accepting protein 유사단백질을 암호화하였다. 하단부의 두 개의 작은 열린해독틀은 기능은 알려져 있지 않지만 진정세균계에서 잘 보존된 단백질의 일종으로 나타났다. 역전사효소 중합효소증폭반응을 통하여 여섯 개의 유전자는 세 개의 독립된 오페론으로 구성되어 있음을 확인하였다. bfmo의 상단부에 위치하는 세 개의 조절유전자는 두 개의 프로모터에서 전사되었다. 그리고 이와 독립적으로 bfmo와 두 개의 하단부 유전자가 하나의 전사단위를 이루고 있다.

Properties of Electron Carriers in the Process of Methanol Oxidation in a New Restricted Facultative Marine Methylotrophic Bacterium, Methylophaga sp. MP

  • Koh, Moon-Joo;Kim, Chun-Sung;Kim, Yun-A;Choi, Hack-Sun;Cho, Eun-Hee;Kim, Eung-Bin;Kim, Young-Min;Kim, Si-Wouk
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.476-482
    • /
    • 2002
  • Methanol dehydrogenase (MDH) and c-type cytochromes from marine methanol-oxidizing bacterium, Methylophaga sp. MP, were purified and characterized. The native MDH had a molecular mass of 148 kDa and its isoelectric point was 5.5. Two c-type cytochromes, $c_L\;and\;c_H$, were found, and their isoelectric points were 3.4 and 8.0, respectively. The purified MDH had higher thermal stability than that of the other soil methylotrophic bacteria. The electron flow rate from MDH to cytochrome $c_L$was higher than that from MDH to cytochrome $c_H$, indicating that the physiological primary electron acceptor for MDH is cytochrome $c_L$. The electron transfer from MDH to phenazine ethosulfate (PES, artificial electron acceptor) in the two dye (PES/DCPIP)-linked assay system was not inhibited by NaCl, whereas the electron flow from MDH to cytochrome $c_L$ in the cytochrome/DCPIP-linked assay system was suppressed significantly by NaCl. Metal chelating agents such as EDTA showed the same effects on the MDH activity.

Crystal Structure of Cytochrome cL from the Aquatic Methylotrophic Bacterium Methylophaga aminisulfidivorans MPT

  • Ghosh, Suparna;Dhanasingh, Immanuel;Ryu, Jaewon;Kim, Si Wouk;Lee, Sung Haeng
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1261-1271
    • /
    • 2020
  • Cytochrome cL (CytcL) is an essential protein in the process of methanol oxidation in methylotrophs. It receives an electron from the pyrroloquinoline quinone (PQQ) cofactor of methanol dehydrogenase (MDH) to produce formaldehyde. The direct electron transfer mechanism between CytcL and MDH remains unknown due to the lack of structural information. To help gain a better understanding of the mechanism, we determined the first crystal structure of heme c containing CytcL from the aquatic methylotrophic bacterium Methylophaga aminisulfidivorans MPT at 2.13 Å resolution. The crystal structure of Ma-CytcL revealed its unique features compared to those of the terrestrial homologues. Apart from Fe in heme, three additional metal ion binding sites for Na+, Ca+, and Fe2+ were found, wherein the ions mostly formed coordination bonds with the amino acid residues on the loop (G93-Y111) that interacts with heme. Therefore, these ions seemed to enhance the stability of heme insertion by increasing the loop's steadiness. The basic N-terminal end, together with helix α4 and loop (G126 to Y136), contributed positive charge to the region. In contrast, the acidic C-terminal end provided a negatively charged surface, yielding several electrostatic contact points with partner proteins for electron transfer. These exceptional features of Ma-CytcL, along with the structural information of MDH, led us to hypothesize the need for an adapter protein bridging MDH to CytcL within appropriate proximity for electron transfer. With this knowledge in mind, the methanol oxidation complex reconstitution in vitro could be utilized to produce metabolic intermediates at the industry level.

The Interaction between Methanol Dehydrogenase and MxaJ Protein of a Marine Methylotrophic Bacterium Methylophaga aminisulfidivorans $MP^T$

  • Kim, Hee-Gon
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2008년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.163-163
    • /
    • 2008
  • Methylophaga aminisulfidivorans $MP^T$, a restricted facultative marine methylotrophic bacterium, was able to utilize methanol as a sole carbon and energy source, and possessed a methanol dehydrogenase (MDH) that is a key enzyme in the process of methanol oxidation. During purification of MDH, three types of MDH (MDH I, II, and III) were obtained in the cell free extracts from $MP^T$ cells grown on methanol. When analyzed by SDS-PAGE and ESI-FT ICR MS, MDH I was confirmed to consist of two subunits and with molecular masses of ~66 and ~10 kDa, respectively, in a form of ${\alpha}_2{\beta}_2$. While MDH II and MDH III contained an additional ~30 kDa protein, designated ${\gamma}$, in a form of ${\alpha}_2{\beta}_2{\gamma}$ and ${\alpha}_2{\beta}_2{\gamma}_2$, respectively. MDH III showed 1.5.2.0 times higher activity than MDH II, while MDH I remained the lowest activity. Based on these observations and experimental data, it seems that the original MDH conformation is ${\alpha}_2{\beta}_2{\gamma}2$ within $MP^T$ growing on methanol, and subunit ${\gamma}$ keeps MDH in an active form, and/or makes MDH easily bind to the substrate, methanol.

  • PDF

염전으로부터 농화배양된 호염 메틸영양미생물 군집의 특성 (Prokaryotic Communities of Halophilic Methylotrophs Enriched from a Solar Saltern)

  • 김종걸;박수제;이성근
    • 미생물학회지
    • /
    • 제46권3호
    • /
    • pp.286-290
    • /
    • 2010
  • C-1화합물은 고염분성 환경의 혐기적인 퇴적층에서 관찰되며, 이 퇴적층의 표면과 수면에는 호기성 메틸영양미생물의 잠재적인 서식지가 된다. 염전과 갯벌에서 채취한 토양 시료를 접종원으로 하여 메탄올을 탄소원과 에너지원으로 공급하고 염분농도에 따라 계대배양한 후 메탄올 산화 세균 성장 조건을 살펴 본 결과, 메탄올 산화 세균이 성장 할 수 있는 염분의 최대 농도는 20% 조건이었다. 변성 구배 젤 전기영동 (Denaturing gel gradient electrophoresis)을 이용하여 농화배양액 내 미생물 군집구조를 분석한 결과, 메탄올 산화 미생물인 Methylophaga 관련 세균이 우점하는 것으로 나타났다. 정량 PCR결과 고세균이 세균의 1-10%로 존재하는 것으로 나타났다. 세균용 항생제 실험결과, 메탄올 산화가 억제되어 고세균이 메탄올 산화에 관여하지 않는다는 것을 추정할 수 있었다. 이번 연구를 통해, 메틸영양세균이 고염분환경(염분 농도 20%까지)에서도 C-1 화합물을 산화할 수 있음을 확인 할 수 있었다.