• Title/Summary/Keyword: Methylobacterium

Search Result 79, Processing Time 0.02 seconds

고점성 신규 생물고분자, methylan

  • 김정회;최준호
    • The Microorganisms and Industry
    • /
    • v.18 no.1
    • /
    • pp.59-63
    • /
    • 1992
  • 값이 저렴한 메탈올로부터 새로운 고점도성 생물고분자인 다당류의 생산과 활용은 산업적으로도 매우 흥미있는 분야이다. 본고에서는 최근 본 연구실에서 개발한 메탄올 자화세균(facultative methylotroph)인 Methylobacterium organophilum이 생산하는 신규의 고점성 다당류인 메틸란(methylan)의 생산 및 그 특성과 응용에 관하여 고찰하고자 한다.

  • PDF

Investigation on the Cause of Malodor through the Reproduction of Chemicals (화학물질의 재현을 통한 악취발생원인 규명)

  • Park, Sang Jun;Oh, Young Hwan;Jo, Bo Yeon;Lee, Jae Shin;Kim, Eui Yong
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms and through microorganisms coexisting with each other to form a biofilm on the evaporator surface. A bacterium, Methylobacterium aquaticum, can form a biofilm on the evaporator surface. The biofilm was composed of 45.79% C (Carbon), 42.36% O (Oxygen), 1.85% Na (Sodium), 5.42% Al (Aluminum), 1.39% P (Phosphorus), 0.74% Cl (Chlorine) and 2.45% K (Potassium). This result matches the composition of the biofilm formed on the surface of the used evaporator. It was determined that sulfur compounds (Hydrogen sulfide, Dimethyl sulfide) and organic acids (n-Butyric acid, n-Valeric acid, iso-Valeric acid) in the air which was blown into the automobile were generated by Methylobacterium aquaticum and Aspergillus versicolor, respectively. On the other hand, volatile organic compounds (Toluene, Xylene, 2-Ethylhexanol, 2-Phenyl- 2-propanol, Ethylbenzene) were not found. It is estimated that the reason is due to the low concentration of generated MVOCs or is caused by the change of some MVOCs depending on the nutrients (medium).

Engineering of Recombinant Escherichia coli Towards Methanol Sensing Using Methylobacterium extroquens Two-component Systems

  • Selvamani, Vidhya;Ganesh, Irisappan;Chae, Sowon;Maruthamuthu, Murali kannan;Hong, Soon Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.24-31
    • /
    • 2020
  • Five genes (mxbDM, mxcQE and mxaB) are responsible for the transcription of methanol oxidation genes in Methylobacterium strains. Among these, MxbDM and MxcQE constitute the two-component system (TCS) regulating methanol metabolism. In this study, we integrated the methanol-sensing domain of MxbD and MxcQ with the EnvZ/OmpR from Escherichia coli. The domain-swapping strategy resulted in chimeric histidine kinases (HK's) MxbDZ and MxcQZ AM1 containing recombinant E. coli. Real-time quantitative PCR was used to monitor OmpC expression mediated by the chimeric HK and response regulator (RR) OmpR. Further, an ompC promoter based fluorescent biosensor for sensing methanol was developed. GFP fluorescence was studied both qualitatively and quantitatively in response to environmental methanol. GFP measurement also confirmed ompC expression. Maximum fluorescence was observed at 0.05% methanol and 0.01% methanol using MxbDZ and MxcQZ AM1, respectively. Thus the chimeric HK containing E. coli were found to be highly sensitive to methanol, resulting in a rapid response making them an ideal sensor.

Determination of Malodor-causing Chemicals Produced by Microorganisms Inside Automobile (차량 내 미생물에 의해 생성되는 악취유발 화학물질의 분석)

  • Park, SangJun;Kim, EuiYong
    • KSBB Journal
    • /
    • v.29 no.2
    • /
    • pp.118-123
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms getting into an air-conditioner when it is operating. Chemicals such as hydrogen sulfide, dimethyl sulfide, nbutyric acid, n-valeric acid, iso-valeric acid, n-octanol and toluene were detected above the odor threshold inside the automobile. The characteristics of a funky odor in the air blown into the automobile were due to detected sulfur compounds (hydrogen sulfide and dimethyl sulfide). Dimethyl sulfide was produced by microorganisms such as Aspergillus versicolor, Methylobacterium aquaticum, Herbaspirillum sp. and Acidovorax sp. In addition, the characteristics of a sour odor in the air blown into the automobile were due to detected organic acids (n-butyric acid, n-valeric acid and iso-valeric acid). N-valeric acid and iso-valeric acid were generated from Aspergillus versicolor, while iso-valeric acid was produced by Methylobacterium aquaticum. In addition, the odor intensity of the air blown into the automobile was affected by the concentration of detected sulfur compounds and organic acids. On the other hand, it is estimated that chemicals such as hydrogen sulfide, n-octanol and n-butyric acid detected in the air blown into the automobile were produced by non-identified species of microorganisms.

Antibacterial Effect of Multi-walled Carbon Nanotubes Decorated with Copper Nanoparticles (구리나노입자가 장식된 다중벽 탄소나노튜브의 항균효과)

  • Seo, Yeong-Min;Choe, Jong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.118.2-118.2
    • /
    • 2016
  • 몇몇의 박테리아들은 바이오필름을 형성하여 그들 스스로를 보호한다. 하지만 바이오필름으로 인해 악취와 질병 등의 문제가 많이 발생되고 있기 때문에 바이오필름을 형성하는 박테리아의 성장을 효율적으로 억제하기 위해 은 나노, 구리 나노입자들이 포함된 다양한 나노스케일의 재료들에 대한 연구가 활발히 진행되어오고 있다. 이들 연구의 주된 목표는 체내에서 독성은 나타내지 않으면서 항균성을 증가시키는 것에 있다. 특히, 구형으로 이루어진 나노입자와 높은 종횡비를 가지는 탄소나노튜브와 같이 차원이 다른 나노물질들의 복합체들은 세포독성을 최소화하면서 특정 박테리아에 대한 항균성을 향상시킬지도 모른다. 이번 연구에서는, 산 처리된 탄소나노튜브에 화학적인 방법을 이용하여 구리 이온을 각각 환원시켜 구리 나노-탄소나노튜브 복합체를 합성하였다. 이들 복합체는 transmission electron microscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy 를 이용하여 특성이 분석되었고 Methylobacterium spp., Sphingomonas spp. 와 E. coli 에 대하여 항균성이 평가되었다. 추가적으로 구리 나노-탄소나노튜브 복합체는 human fibroblast cells 에 대하여 세포독성이 평가되었고 제작된 마이크로칩 안에 형성된 바이오필름의 성장억제효과가 평가되었다. 결과적으로, 구리 나노-탄소나노튜브 복합체에서 바이오필름을 형성하는 Methylobacterium spp. 에 대하여 특이적으로 항균성을 나타냈으며 바이오필름이 형성된 마이크로칩에서 바이오필름을 제거 하는 것이 확인되었다.

  • PDF

Effect of Agitation on Production of Methylan and Rheological Characteristics of Methylan Fermentation Broth (다당류, 메틸란, 발효밴잉액의 점성특성과 메틸란 생산에 미치는 교반속도의 영향)

  • Oh, Deok-Kun;Lim, Hyun-Soo;Kim, Jung-Hoe
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.191-195
    • /
    • 1995
  • Production of a high viscosity exoploysaccharide, methylan, by Methylobacterium organophilum from methanol was carried out in fed-batch cultures and the rheological properties of methylan fermentation broth were studied. Bacterial biomass showed little influence on viscosity, but the accumulation of methylan caused the increase of viscosity. With proceeding fermention, the viscosity at the same concentration of methylan was significantly increased and methylan solution showed slightly higher pseudoplasticity. The composition changes of methylan were investigated at various fermentation times. Contents of total sugar, reducing sugar and methylan were decreased but contents of acids(pyruvic acid, uronic acid and acetic acid) were increased with the culture time. It was considered that the increased content of acids resulted in the increase of the hyrodynamic domain in the solution due to charge repulsion. Consequently, the solution viscosity increased in propotion to the acids contents of methylan. Cell growth and methylan production were severely decreased by the limitation of dissolved oxygen. However, the cellular activity for methylan production was almost constant regardless of the level of dissolved oxygen. As a result, the high speed of agitation increased the methylan production, the specific production rate of methylan, and the methylan yield of the cell.

  • PDF

Characteristics of Bacteria in the Living Room and Bathroom of a Residential Environment Using the Pyrosequencing Method (파이로시퀀싱 분석법을 이용한 주거 환경 중 거실과 화장실의 세균 특성)

  • Lee, Siwon;Chung, Hyen-Mi;Park, Eung-Roh
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.84-88
    • /
    • 2016
  • In this study, bacterial diversity in the living room and bathroom of a residential environment was analyzed using the pyrosequencing method. There was no difference in the diversity index of bacteria between the 2 rooms; however, differences were noted in the composition of bacteria. The classes ${\beta}$-Proteobacteria and ${\delta}$-Proteobacteria were found in the bathroom at higher abundances than in the living room. The phyla Acidobacteria, Chlorobi, Chloroflexi, Fusobacteria, Nitrospirae, and Planctomycetes were found in the bathroom, but not in the living room, indicating a broader range of bacteria. However, the living room showed a more diverse range of bacterial genera than the bathroom did. In both the living room and the bathroom, the genus Methylobacterium was dominant.

Findings of Microbial Community Structure and Dominant Species in Soils Near Army Bases and Gas Stations (군부대와 주유소 주변에서 채취한 토양에서의 미생물 군집구조와 우점종의 파악)

  • Kim, Jai-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.227-233
    • /
    • 2010
  • This study examined microbial community structures (MCSs) according to environmental factors through DGGE analysis and comparison in various soils collected from near army bases and gas stations. As a result, the similarities based on DGGE band profiles showed the closer relationship in regional properties than in pollution characteristics, probably due to the degree of weak contamination. The highly contaminated samples with oil revealed low MCS similarities with others in the same region and very low with all the other samples in the other regions. Thus the microbial community structure would more be affected by region-based natural factors than by contamination factors in case of minor pollution. All the dominant culturable bacterial species were involved in firmicutes or high GC Gram+ in a major portion of soil samples and the highly oil-contaminated samples contained Arthrobacter, Bacillus, Methylobacterium, Clavibacter, Streptomyces and Nocardia as reported genera, and Leifsonia as a unreported genus.

Biocidal Effects of Chlorine Dioxide on Isolated and Identified Pathogens from Nosocomial Environment - Biochemical and Technical Covergence (병원내 환경으로부터 분리 및 확인된 병원균에 대한 이산화염소의 살균 효과 - 생화학 및 기술 융합)

  • Song, Kyoung-Ju;Jung, Suk-Yul
    • Journal of Digital Convergence
    • /
    • v.15 no.6
    • /
    • pp.339-344
    • /
    • 2017
  • In this study, microorganisms were isolated from nosocomial environment and are identified by biochemical analysis as the part of biochemical and technical convergence. Microorganisms were collected at intense care unit of general hospital located in Pyeongtak (2014.11.28. - 2014. 11. 30). Using a VITEK2 equipment of biochemical approaches, eleven microorganisms e.g., Micrococcus luteus (or M. lylae), Granulicatella adiacens (M. luteus or M. lylae), Staphylococcus caprae, Sphingomonas paucimobilis, Kocuria kristinae, G elegans, Aerococcus viridans (or Staphylococcus arlettae), Methylobacterium spp., Dermacoccus nishinomiyaensis (or Kytococcus sedentarius), Kocuria kristinae (or M. luteus, M. lylae), Pseudomonas oryzihabitans were identified. And then identified bacteria plates were applied with a plastic stick, so called with "FarmeTok (medistick/Puristic) to produce ClO2. ClO2-releasing plastic stick showed the very strong inhibition of bacterial growth with about 99.9%. There were no bacterial colonies on the ClO2-incubated plate. Taken together, it is suggested that chlorine dioxide should be very strong inhibitor to microorganisms of nosocomial infections.

Effect of Ammonium Ion on the Production of a Polysaccharide, Methylan from Methanol by Mentylobacterium organophilum (Methylobacterium organophilum에 의한 메탄올로부터 메틸란의 생산에 대한 암모니아 이온의 영향)

  • 오덕근;임현수김정회
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.170-175
    • /
    • 1995
  • The effect of nitrogen source on production of a high viscosity exopolysaccharide, methylan, from methanol by Mentylobacterium organophilum was investigated in fed-batch culture. During the fermentation, cells continued to grow even after the nitrogen source added to the medium was depleted and methylan production was stimulated under the condition which ammonium ion was depleted. Cell growth increased proportionally to the initial concentration of ammonium ion in the medium, but methylan production was significantly inhibited at the high concentration of ammonium ion. As the initial concentration of ammonium ion increased, the specific growth rate, the specific product formation rate and the specific substrate consumption rate decreased due to the inhibitory effect of excess ammonium ions. In order to reduce the inhibitory effect by high concentration of ammonium ion. The control of ammonium ion concentration within the desired level(usually $0.45g/\ell$) was necessary. When ammonium ion concentration was maintained below $0.15g/\ell$ by exponential feeding, methylan production could be increased up to $12.5g/\ell$.

  • PDF