Findings of Microbial Community Structure and Dominant Species in Soils Near Army Bases and Gas Stations

군부대와 주유소 주변에서 채취한 토양에서의 미생물 군집구조와 우점종의 파악

  • Received : 2010.01.12
  • Accepted : 2010.02.02
  • Published : 2010.03.31

Abstract

This study examined microbial community structures (MCSs) according to environmental factors through DGGE analysis and comparison in various soils collected from near army bases and gas stations. As a result, the similarities based on DGGE band profiles showed the closer relationship in regional properties than in pollution characteristics, probably due to the degree of weak contamination. The highly contaminated samples with oil revealed low MCS similarities with others in the same region and very low with all the other samples in the other regions. Thus the microbial community structure would more be affected by region-based natural factors than by contamination factors in case of minor pollution. All the dominant culturable bacterial species were involved in firmicutes or high GC Gram+ in a major portion of soil samples and the highly oil-contaminated samples contained Arthrobacter, Bacillus, Methylobacterium, Clavibacter, Streptomyces and Nocardia as reported genera, and Leifsonia as a unreported genus.

각종 오염지역의 오염토양의 시료를 채취해 DGGE를 이용한 미생물군집구조를 서로 비교함으로써 어떤 요인이 영향을 많이 미치는지를 알아보았다. 미생물군집의 유사도 비교에서 TPH 오염 말고는 대부분의 오염정도가 심하지 않아서 오염 특성보다는 토양시료가 채취된 지역에 따라 더 유사함을 보여주었고 TPH 오염도가 가장 높았던 시료에서만 지역적 특성을 넘어 유사도 차이를 보여 주었다. 이와 같이 오염요인이 너무 크지 않은 경우에는 미생물군집구조가 지역특성 즉 여러 다른 환경요인에 의해 더 크게 영향을 받는 것을 이 연구를 통해 알 수가 있었다. 모든 오염토양의 우점종(배양성 세균) 조사에서 firmicutes와 high GC Gram+에 속하는 세균들이 주로 발견되었고 유류오염이 심한 토양에서 이미 보고된 Arthrobacter, Bacillus, Methylobacterium, Clavibacter, Streptomyces, Nocardia와 아직 보고되지 않은 Leifsonia가 발견되었다.

Keywords

References

  1. Watanabe, K., "Microorganisms relevant to bioremediation," Curr. Opin. Struct. Biol., 12, 237-241(2001).
  2. MacNaughton, S. J., Stephen, J. R., Venosa, A. D., Davis, G.A., Chang, Y. J., and White, D. C., "Microbial population changes during bioremediation of an experimental oil spill," Appl. Environ. Microbiol., 65, 3566-3574(1999).
  3. Roling, W. F., Milner, M. G., Jones, M., Lee, K. Daniel, F., Swannell, R. J. P., and Head, I. M., "Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation," Appl. Environ. Microbiol., 68, 5537-5548(2002). https://doi.org/10.1128/AEM.68.11.5537-5548.2002
  4. 동화기술편집부, "수질오염. 폐기물.토양오염 공정시험법," 동화기술, pp. 1-887(2009).
  5. EPA, "Method 3051A: Microwave assisted acid digestion of sediments, sludges, soil, and oils," pp. 1-30(2007a), (www.epa. gov/waste/hazard/testmethods/sw846/pdfs/3051a.pdf).
  6. EPA, "Method 8015C: Nonhalogenated organics by gas chromatography," pp. 1-36(2007b), (www.epa.gov/waste/hazard/ testmethods/sw846/pdfs/8015c.pdf).
  7. Muyzer, G., Brinkhoff, T., Nubel, U., Santegoeds, C., Schafer, H., and Wawer, C., "Denaturing gradient gel electrophoresis (DGGE) in microbial ecology," Mol. Microbiol. Ecol. Manual, 3.4.4, pp. 1-27(1998).
  8. Kim, J., Min, K. A., Cho, K. S., and Lee, I. S., "Enhanced bioremediation and modified bacterial community structure by barnyard grass in diesel-contaminated soil," Environ. Eng. Res., 12, 37-45(2007). https://doi.org/10.4491/eer.2007.12.2.037
  9. Kim, J., Koo, S. Y., Kim, J. Y., Lee, E. H., Lee, S. D., Ko, K. S., Ko, D.C., and Cho, K. S., "Influence of acid mine dgainage on microbial communities in stream and groundwater samples at Guryong Mine, South Korea," Environ. Geol., 58, 1567-1574(2009). https://doi.org/10.1007/s00254-008-1663-8
  10. Betancur-Galvis, L. A., Alvarez-Bernal, D., Ranos-Valdivia, A. C., and Dendooven, L., "Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline-alkaline soils of the former Lake Texacoco," Chemosphere, 62, 1749-1760(2006). https://doi.org/10.1016/j.chemosphere.2005.07.026
  11. Paul, E. A., and Clark, F. E., "Soil microbology and biochemistry," Academic Press, San Diego, California, USA, p. 54(1989).
  12. Atlas, R. M., "Microbial degradation of petroleum hydrocarbons: an environmental perspective," Microbiol. Rev., 45, 180-209 (1981).
  13. Dott, W., Feidieker, D., Steiof, M., Becker, P. M., and Kampfer, P., "Comparison of ex situ and in situ techniques for bioremediation of hydrocarbon-polluted soils," Int. Biodeterior. Biodegrad., 35, 301-316(1995). https://doi.org/10.1016/0964-8305(95)00040-C
  14. Bento, F. M., Camargo, F. A. O., Okeke, B. C., and Frankenberger, W. T., "Comparative bioremediation of soils contaminated with diesel oil by n of al attenuation, biostimulation and bioaugmentation," Biores our. Technol., 96, 1049-1055(2005). https://doi.org/10.1016/j.biortech.2004.09.008
  15. Sette, L. D., Simioni, K. C. M., Vasconcellos, S. P., Dussan, L. J., Neto, E. V. S., and Oliveira, V. M., "Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin," Antonie Leeuwenhoek, 91, 253-266(2007). https://doi.org/10.1007/s10482-006-9115-5
  16. Van Gestel, K., Mergaert, J., Swings, J., Coosemans, J., and Ryckeboer, J., "Bioremediation of diesel oil-contaminated soil by composting with biowaste," Environ. Pollut., 125, 361-368(2003). https://doi.org/10.1016/S0269-7491(03)00109-X
  17. Tesar, M., Reichenauer, T. G., and Sessitsch, A., "Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel," Soil Biol. Biochem., 34, 1883-1892(2002). https://doi.org/10.1016/S0038-0717(02)00202-X
  18. Monteiro-Vitorello, C. B., "The genome sequence of the Gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli," MPMI, 17, 827-836(2004). https://doi.org/10.1094/MPMI.2004.17.8.827