• Title/Summary/Keyword: Methylene blue (MB)

Search Result 202, Processing Time 0.028 seconds

Coconut husk as a biosorbent for methylene blue removal and its kinetics study

  • Dave, Shailesh R.;Dave, Vaishali A.;Tipre, Devayani R.
    • Advances in environmental research
    • /
    • v.1 no.3
    • /
    • pp.223-236
    • /
    • 2012
  • Biosorption of methylene blue (MB) from aqueous solution was studied with respect to the point of zero charge of coconut husk, dye concentration, particle size, pH, temperature, as well as adsorbent and NaCl concentration using coconut husk biomass. Amongst Langmuir and Freundlich adsorption isotherms studied, Langmuir adsorption isotherm showed better agreement. Pseudo second order kinetics model was found to be more suitable for data presentation as compared to pseudo first order kinetics model. Also, involvement of diffusion process was studied using intraparticle diffusion, external mass transfer and Boyd kinetic model. Involvement of intraparticle diffusion model was found to be more relevant (prominent) as compared to external mass transfer (in) for methylene blue biosorption by the coconut husk. Moreover, thermodynamic properties of MB biosorption by coconut husk were studied. Desorption of methylene blue from biomass was studied with different desorbing agents, and the highest desorption achieved was as low as 7.18% with acetone, which indicate stable immobilization. Under the experimental conditions MB sorption was not significantly affected by pH, temperature and adsorbent concentration but low sorption was observed at higher NaCl concentrations.

Methylene blue-PVA Dosimeter (Methylene blue-PVA 선량계(線量計))

  • Chung, W.H.;Kim, H.S.;Kim, H.J.;Jung, H.T.
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.1
    • /
    • pp.64-66
    • /
    • 1985
  • A methylene blue-PVA system has been tested as a krad range dosimeter. Mb dye films were fabricated by casting PVA in solution with the methylene blue. In the air the system was irradiated by X-ray and the decolorisation of the dye film was found to remain unchanged for sufficiently long time. The radiation response on optical density at 670 nm in the Mb-PVA system shows a quite good linearity and reproducibility in the krad range.

  • PDF

Adsorption Characteristics of Methylene Blue from Aqueous Solution According to Physical and Surface Properties of Activated Carbons (활성탄의 물리적 특성과 표면 특성에 따른 수중의 methylene blue의 흡착특성)

  • Kam, Sang-Kyu;You, Hae-Na;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1821-1826
    • /
    • 2014
  • The adsorption characteristics of the methylene blue (MB) were studied using three activated carbons such as ACA and ACB with similar specific surface area (1,185 and $1,105m^2/g$), and ACC with relatively high specific surface area ($1,760m^2/g$). The surface chemical properties of these activated carbons were investigated by X-ray photoelectron spectroscopy (XPS). The results indicated that ACA had more functional groups (with phenol, carbonyl, and carboxyl etc.) than ACB (with carbonyl and carboxyl) and ACC (with carboxyl). The isotherm data were fitted well by Langmuir isotherm model. The adsorption capacities of ACA, ACB, and ACC for MB were 454.7 mg/g, 337.7 mg/g, and 414.0 mg/g, respectively. As phenol and carboxyl content of the surface on activated carbon increased, MB adsorption capacity was increased. Although ACA had a smaller specific surface area than ACC, the content of phenol and carboxyl group was abundant, so MB adsorption capacity was found to be higher than ACC.

Biosorption of Methylene Blue from Aqueous Solution using Dried Rhodotorula glutinis Biomass

  • Dae Haeng Cho;Jaesung Lee;Eui Yong Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.273-277
    • /
    • 2023
  • The biosorption of methylene blue (MB) from aqueous solution was investigated using dried Rhodotorula glutinis as the biosorbent. The effects of pH, initial dye concentration, biosorbent dosage, and kinetic studies were determined to obtain valuable information for biosorption. Results indicated that most of the adsorbed MB bound within 30 minutes of contact and the MB adsorption capacity increased from 21.1 to 101.8 mg/g with the initial MB concentration increased from 50 to 300 mg/L. Additionally, the MB adsorption capacity gradually increased from pH 4.0 to 9.0, reaching its peak at an initial pH of 9.0. As the biomass load was increased from 0.25 to 4.0 g/L, the MB removal efficiency increased from 14.1 to 84.5%. The Langmuir model provided the best fit throughout the concentration range, and the maximum adsorption capacity (qmax) and Langmuir constant (b) were determined to be 135.14 mg/g and 0.026 l/mg, respectively. Furthermore, the biosorbent process of R. glutinis was found to follow pseudo-second-order kinetics and the calculated qeq,cal value showed good agreement with the experimental qeq value. Overall, the biosorption of MB by R. glutinis can be characterized as a monolayer, single site type phenomenon, and the rate-limiting step was determined to be the chemical reaction between the adsorbent and the adsorbate.

Spectroscopic Study on Three States of Water in the Reverse Micelle Using Methylene Blue as a Probe (Methylene Blue를 이용한 역미셀에서 물의 세 가지 상태에 대한 분광학적 연구)

  • Bum Young Park;Kab Sang Jung;Soo-Chang Yu;Ho Seob Choi
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.4
    • /
    • pp.309-314
    • /
    • 2003
  • In order to find out the microscopic environmental information on the nonionic reverse micelle of Triton X-100/n-hexanol/water in cyclohexane, an absorption and fluorescence spectroscopic study has been conducted using a methylene blue(MB). The information on the microscopic states of water in the polar core of the reverse micelle has been found by investigating complex formation and solvatochromic behavior between MB and Triton X-100. As a result, it was found that there exist three states in the polar core of the reverse micelle. The measured values of $W(=[H_2O]/[Surf])$ for the three states of water are 0.71, 4.98, and 7.26, and the corresponding lifetimes of MB are $15.45 ns{\pm}0.56$, $12.27 ns{\pm}0.79$, and $8.28 ns{\pm}0.82$, respectively.

Adsorption Characteristics of Methylene Blue and Phenol from Aqueous Solution using Coal-based Activated Carbon (석탄계 활성탄에 의한 수중의 메틸렌블루와 페놀 흡착 특성)

  • Lee, Song-Woo;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1161-1170
    • /
    • 2013
  • The efficiency of coal-based activated carbon in removing methylene blue (MB) and phenol from aqueous solution was investigated in batch experiments. The batch adsorption kinetics were described by applying pseudo-first-order, pseudo-second-order, and first order reversible reaction. The results showed that the adsorption of MB and phenol occurs complexed process including external mass transfer and intraparticle diffusion. The maximum adsorption capacity obtained from Langmuir isotherm was 461.0 mg/g for MB and 194.6 mg/g for phenol, respectively. The values of activation parameters such as free energy (${\Delta}G^0$), enthalpy (${\Delta}H^0$), and entropy (${\Delta}S^0$) were also determined as -19.0~-14.9 kJ/mol, 25.4 kJ/mol, and 135.2 J/mol K for MB and 51.8~54.1 kJ/mol, -29.0 kJ/mol, and -76.4 kJ/mol K for phenol, respectively. The MB adsorption was found to be endothermic and spontaneous process. However, the CV adsorption was found to be exothermic and non-spontaneous process.

Preparation of chitosan, sunflower and nano-iron based core shell and its use in dye removal

  • Turgut, Esra;Alayli, Azize;Nadaroglu, Hayrunnisa
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.135-150
    • /
    • 2020
  • Many industries, such as textiles, chemical refineries, leather, plastics and paper, use different dyes in various process steps. At the same time, these industrial sectors are responsible for discharging contaminants that are harmful and toxic to humans and microorganisms by introducing synthetic dyes into wastewater. Of these dyes, methylene blue dye, which is classified as basic dyes, is accepted as a model dye. For this reason, methylene blue dye was selected in the study and its removal from the water was studied. In this study, two efficient biosorbents were developed from chitosan and sunflower waste, an agro-industrial waste and modified using iron nanoparticles. The biosorption efficiency was evaluated for methylene blue (MB) dye removal from aqueous solution under various parameters such as treating agent, solution pH, biosorbent dosage, contact time, initial dye concentration and temperature. We investigated the kinetic properties of dye removal from water for Chitosan-Sunflower (CS), Chitosan-Sunflower-Nanoiron (CSN). When the wavelength of MB dye was spectrophotometrically scanned, the maximum absorbance was determined as 660 nm. For the core shell biosorbents we obtained, we found that the optimum time for removal of MB from wastewater was 60 min. The pH of the best pH was determined as 5 in the studied pH. The most suitable temperature for the experiment was determined as 30℃. SEM-EDAX, TEM, XRD, and FTIR techniques were used to characterize biosorbents produced and modified in the experimental stage and to monitor the change of biosorbent after dye removal. The interactions of the paint with the surface used for removal were explained by these techniques. It was calculated that 80% of CS and 88% of CSN removed MB in optimum conditions. Also, the absorption of MB dye onto the surface was investigated by Langmiur and Frendlinch isotherms and it was determined from the results that the removal was more compatible with Langmiur isotherm.

Removal Properties of Methylene Blue in Catalytic Ozonation (촉매오존화에 의한 메틸렌 블루 제거특성)

  • Chung, Jae-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.3
    • /
    • pp.5-12
    • /
    • 2017
  • Effects of operating parameters such as activated carbon dose, gaseous $O_3$ concentration and pH on the properties of methylene blue(MB) degradation in a catalytic ozonation were investigated through a series of batch experiments. Activated carbon catalyzed the self-decomposition of ozone, generating $OH{\cdot}$, thus promoting MB degradation. Thus the increase of activated carbon dose enhanced the MB and TOC removal. The higher gaseous ozone concentration injected, the promoted MB and TOC removal obtained through the enhanced mass transfer. The MB removal was not significantly affected by the variation of aqueous pH. Catalytic ozonation can be considered as an efficient alternative in treating refractory pollutants in textile wastewater with faster and higher dye and TOC removal compared with ozonation and adsorption.

Comparative Evaluation of Methylene Blue and Humic Acids Removal Efficiency Using Rice Husk Derived Biochars and Powdered Activated Carbon (쌀겨 바이오차와 분말 활성탄을 이용한 메틸렌 블루와 휴믹산 제거 효율 비교)

  • Lee, Juwon;Jeong, Eunju;Lee, Jungmin;Lee, Yong-Gu;Chon, Kangmin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.483-492
    • /
    • 2021
  • This study evaluated the removal efficiencies of methylene blue (MB) and humic acids (HA) using a rice husk (RH) biochar and powdered activated carbon (PAC). The pseudo-second-order model better presented the adsorption of MB and HA onto a RH biochar than the pseudo-first-order model. Furthermore, better description of the adsorption behavior of MB and HA by the Langmuir isotherm model (R2 of the RH biochar: MB = 0.986 and HA = 0.984; R2 of PAC: MB = 0.997 and HA = 0.989) than the Freundlich isotherm model (R2 of the RH biochar: MB = 0.955 and HA = 0.965; R2 of PAC: MB = 0.982 and HA = 0.973) supports the assumption that monolayer adsorption played key roles in the removal of MB and HA using the RH biochar and PAC. Batch experiments were performed on the effects of dosage, temperature, and pH. For all experiments, PAC showed higher efficiencies than RH biochar and MB adsorption efficiencies were higher than those of HA. Adsorption efficiencies increased with increasing amounts of adsorbents and temperature. As the pH increased, adsorption efficiencies of MB were increased while adsorption efficiencies of HA were decreased.

Effect of Sodium Taurodeoxycholate on the Disposition and Elimination of Methylene Blue in the Rats of Experimental Hepatic Failure (Sodium Taurodeoxycholate가 간장해 Rat에서 메틸렌 블루의 체내분포와 소실에 미치는 영향)

  • 권오승;심창구;이민화;김신근
    • YAKHAK HOEJI
    • /
    • v.30 no.2
    • /
    • pp.68-72
    • /
    • 1986
  • Effect of sodium taurodeoxycholate (TDC) on the pharmacokinetics of methylene blue (MB) was investigated in the rats of experimental hepatic failure induced by $CCI_4$. Intravenous infusion of TDC increased the distribution volume of central compartment ($Vd_1$) and the total body clearance ($CL_t$) of MB. Increased lipophilicity through ion-pair formation with TDC seemed to be the probable cause of increased $Vd_1$ and $CL_t$.

  • PDF