• Title/Summary/Keyword: Methyl butyrate

Search Result 19, Processing Time 0.031 seconds

A Study on Combustion Characteristics of Methyl/Ethyl Butyrate blend (메틸/에틸 부틸레이트 혼합연료의 연소특성에 관한 연구)

  • Kim, Sungwoo;Lee, Minho;Kim, Jeonghwan;Min, Kyoung-Il;Kim, Kiho;Yim, Eui-Soon;Jung, Choong Sub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.109.1-109.1
    • /
    • 2011
  • This study is a part of the project that investigates a possibility of using methyl/ethyl butyrate as an alternative material of MTBE. To investigate characteristics of the two materials, a 2.0L 4-cylinders SI engine that was coupled to an 160kw EC engine dynamometer was used and operated several conditions. Two exhaust gas analyzer was used to measure CO, NOx and THC of after and before of a catalyst. Also, to compare combustion characteristics of the fuels a combustion analyzer was used for measuring pressure of inside of a cylinder. The results show no special difference between MTBE and the two materials from the emission and combustion characteristics aspect.

  • PDF

Characteristics of Volatile Flavor Compounds in Kochujang Prepared with Commercial Enzyme During Fermentation (효소제를 사용한 개량식고추장의 숙성과정 중 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.207-213
    • /
    • 2003
  • Kochujang was prepared for this study with raw material inoculated by commercial enzyme of amylase and protease. Volati1e compounds of Kochujang were analyzed using a purge and trap method during fermentation and identified with GC-MSD. Total 54 kinds of volatile flavor components like 16 kinds of alcohol, 16 kinds of ester, 7 kinds of acid, 4 kinds of aldehyde, 2 kinds of alkane, 1 kind of benzene, 3 kinds of ketone, 1 kind of alkene, 2 kind of amine, 1 kind of phenol, other 1 were found. Total number of volatile flavor detected right after manufacturing were 23 kinds like 3 kinds of alcohol, 6 kinds of ester, 3 kinds of aldehyde. After 30 days storage, total number of volatile flavor went up to 31 kinds with addition of 4 kinds of alcohol, 1 kind of ester. The total number of volatile flavor after 120 days storage were increased to 49 kinds. Volatile flavor compounds detected during the storage period were total 20 kinds like 6 kinds of alcohol such as 2-methyl-1-propanol, ethanol, 3-methyl-1-butanol, 5 kinds of ester such as ethyl acetate, isoamyl acetate, ethyl butyrate, 3 kinds of aldehyde such as butanal, acetaldehyde and 6 kinds of others. Even though peak area % of flavor compound varied depends on fermentation period, ethanol, ethyl acetate, ethyl butyrate, ethenone, 2-methyl-1-propanol, 3-methyl-1-butanol were the main compounds that consisted of flavor from Kochujang which was made with enzyme treatment. Ethly acetate showed the highest result in the treatment of right after manufacturing, 3-methyl-1-butanol had up to 90th day and ether were the other days.

Characteristics of Volatile Flavor Compounds in Kochujangs with Meju and Soybean Koji during Fermentation (메주와 콩 고오지를 혼용하여 담금한 고추장 숙성중의 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1035-1042
    • /
    • 2000
  • Volatile compounds of kochujang prepared with meju and koji were analyzed by using a purge and trap method during fermentation and identified with GC-MSD. Thirteen alcohols, seventeen esters, seven acids, six aldehydes and nine others were identified. Twenty four volatile flavor detected immediately after making kochujang including 7 alcohols and 9 esters. Six volatile flavor compounds including 1 alcohol and 3 esters were more found after 30 day of fermentation and increased to forty nine of volatile compounds after 150 days. Six alcohols such as ethanol, 3-methyl-butanol, 2-methyl-1-propanol, 1-butanol and nine esters such as ethyl acetate, ethyl butyrate, ethyl caproate, ethyl carpylate and seven others were commonly found through the fermentation period. Peak area (%) of 1-butanol was the highest one among the volatile flavor compounds after 30 day of fermentation and ethanol showed the highest peak area after 60-90 day and 150 day of fermentation, and 3-methyl-1-butanol showed the highest peak area after 120 day of fermentation, 2-Methyl-1-propanol, ethyl butyrate, ethyl acetate, acetaldehyde, ethoxyethene, ethenone, methylbenzene were detected in the kochujang during the fermentation.

  • PDF

Identification of Flavor Components in Korean Ordinary Kochujang Inoculated with Bacillus sp. and Saccharomyces sp. (Saccharomyces 속(屬) 및 Bacillus 속(屬)을 접종(接種)한 한국재래식(韓國在來式)고추장의 향기성분동정(香氣成分同定))

  • Ahn, Cheol-Woo;Sung, Nack-Kie
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 1988
  • Kochujang (Red pepper paste) is one of a traditional fermented seasoning foods having peculia. flavor. In present paper, the effects of microorganisms on the formation of volatile components of Kochujang during fermentation were observed. The volatiles of Kochujang were extracted by a steam-distillation under the reduced pressure and determined by gas chromatography and gas chromatography-mass spectrometry (CC-MS), respectively. During fermentation of Kochujang, Saccharomyces sp. and three strains of Bacillus sp. were isolated as main microorganisms participating in the formation of volatile components. According to the analytical results, tetrahydro geroniol, furfuryl alcohol, methoxy acecoptenone and myrtanal in Kochujang inoculated with Saccharomyces spl, 2-methyl-propan-2-ol, furfuryl alcohol an furfuryl-n-butyrate in Kochujang inoculated with Bacillus sp. B-1, 2-methyl-propan-2-ol, furfuryl alcohol and furfuryl-n-butyrate in Kochujang inoculated with Bacillus sp. B-2, and 2-methyl-propan-2-ol, furfuryl alcohol and n-propylbenzene in Kochujang inculated with Bacillus sp. B-3, were identified as major components, respectively.

  • PDF

The diastereoselective synthesis of 2-methyl-5(S)-hexanolide (Carpenter bee pheromone의 2-methyl-5(S)-hexanolide의 부분 입체선택적 합성)

  • Chang, Jay-Hyok;Lee, Sang-Jun;Kim, Jung-Han
    • Applied Biological Chemistry
    • /
    • v.37 no.1
    • /
    • pp.25-29
    • /
    • 1994
  • 2-methyl-5(S)-hexanolide(1); the major component of pheromonal blend of the male carpenter bee was synthesized via Homer-Emmons reaction from Ethyl(S)-3-hydroxybutyrate(2a) which had been obtained by Baker's Yeast reduction in overall yield 39%.

  • PDF

Volatile Flavor Components in Mash of Takju prepared by using Aspergillus oryzae Nuruks. (Aspergillus oryzae 누룩으로 담금한 탁주 술덧의 발효 과정 중 휘발성 향기성분)

  • Lee, Taik-Soo;Han, Eun-Hey
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.366-372
    • /
    • 2001
  • Volatile flavor components in the mash of Takjus prepared by using Aspergillus oryzae nuruk were identified by using Gas Chromatography and Gas Chromatography-Mass Spectrometry. Twenty-four esters, 21 alcohols, 10 acids, 9 aldehydes and 4 others were found in the mash of Takju. Thirty six components including 13 esters and 12 alcohols were detected in the beginning of fermentation. Twenty nine components were more detected after second day of fermentation and 68 components were detected after 12 days of fermentation. Thirty five flavor components including 12 alcohols such as ethanol, 2-methyl-1-propanol, 3-methyl-1-butanol and benzeneethanol, 13 esters such as ethyl acetate, ethyl caprylate, ethyl butyrate and isoamyl acetate, 4 aldehydes and 6 acids were usually detected in the fermentation process. Ethanol was predominantly found in the range of $79.86{\sim}89.54%$ as a major component by using relative peak area. 3-Methyl-1-butanol, ethyl caprylate and benzeneethanol were some of the major volatile components through the fermentation respectively. Peak area of 2-methyl-1-propanol, 1-hexanol, 1-dodecanol, ethyl acetate, monoethyl butanoate, acetic acid and isobutylaldehyde among the same group were higher than other components depending upon fermentation time.

  • PDF

Volatile Flavor Components in Mash of Takju prepared by using Aspergillus kawachii Nuruks (Aspergillus kawachii 누룩으로 담금한 탁주 술덧의 발효 과정 중 휘발성 향기성분)

  • Lee, Taik-Soo;Choi, Jin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.944-950
    • /
    • 2005
  • Volatile flavor components of Takjus mash prepared using Aspergillus kawachii nuruk were identified by GC and GC/MS. Twenty-two esters, 20 alcohols, 10 acids, 8 aldehydes, and 3 others were found in Takju mash. Thirty two components including 13 esters and 13 alcohols were detected at beginning of fermentation. Thirteen more components were detected after second day of fermentation, and 63 additional components after 12 days of fermentation. Twenty nine flavor components including 12 alcohols such as ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol, and benzeneethanol, 12 esters such as ethyl acetate, ethyl caprylate, and ethyl butyrate 3 aldehydes, and 2 acids were detected during fermentation. Major volatile components detected during fermentation included 3-methyl-1-butanol, ethyl caprylate, and benzeneethanol. Peak areas of 2-methyl-1-propanol, 1-hexanol, 2, 3-butanediol (D.L), 1-dodecanol, 2-phenylethyl acetate, ethyl acetate, and monoethyl butanoate were higher than those of other components depending upon fermentation period.

Quality characteristic of Omija (Schizandra chinensis Baillon) seed oils by roasting conditions and extraction methods (볶음 조건 및 추출 방법에 따른 오미자씨유의 품질 특성)

  • Lee, Hyeon-Jeong;Cho, Jeong-Seok;Lee, Yeong-Min;Choi, Ji-Young;Sung, Jun-Hyung;Chung, Hun-Sik;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.845-850
    • /
    • 2015
  • The influence of different roasting temperatures, times and extraction methods on the quality characteristics of Omija (Schizandra chinensis) seed oils was investigated. Roasted Omija seeds were divided into five groups based on roasting temperature-time conditions: no roasting (Raw) and roasting [R11: $150^{\circ}C$, 10 min, R12: $150^{\circ}C$, 20 min, R21: $250^{\circ}C$, 10 min, R22: $250^{\circ}C$, 20 min (R22)]. Oils from each of the raw and roasted Omija seeds were obtained by solvent (n-hexane) and press (machine) extraction. The $L^*$ values decreased, but the $a^*$ and $b^*$ values increased with increasing the roasting temperature and time. The $L^*$ values were lower in the press-extracted oils than in the solvent-extracted oils. The peroxide value (POV) of Omija seed oils decreased with increasing the roasting temperature-time values. The POV value was higher in the press-extracted oils than in the solvent-extracted oils. ABTS (2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical inhibition of Omija seed oils was higher in the solvent-extracted oils than in the press-extracted oils, but there were no significant differences between the two oils. The four major kinds of fatty acid methyl esters detected in Omija seed oils were methyl butyrate, methyl hexanoate, methyl arachidate, and methyl eicosanoate. In conclusion, Omija seed oils obtained by solvent extraction and at higher roasting temperature-time values were more effective antioxidants.

Isolation and Characterization of Cyclohexanol-utilizing Bacteria (Cyclohexanol 이용성 세균의 분리 및 특성)

  • 김태강;이인구
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.107-112
    • /
    • 1999
  • A bacterium, which can utilize cyclohexanol as a sole source of carbon and energy, was isolated from sludge in sewage of Ulsan Industrial Complex for Petrochemicals, Korea and identified as Rhodococcus sp. TK6. The growth conditions of the bacteria were investigated in cyclohexanol containing media. The bacteria utilized cyclohexanol, cyclohexanone, cyclohexane-1,2=diol, cyclopentanol, cyclopentanone, and $\varepsilon$-caprolactone but not cyclohexane, cyclohexane-1,2-dione, and cyclooctanone. The bacteria were able to utilize alcohols such as ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 2-methyl-1-propanol, 3-methyl-1-butanol, 2-propanol, and 2-butanol as well as cyclohexanol, organic acids such as adipate, propionate, butyrate, valerate, n-caproate, and 6-hydroxycaproate, and aromatic compounds such as phenol, salicylate, p-hydroxbenzoate, and benzoate as a sole source of carbon and energy. Cyclohexanone as a degradation product of cyclohexanol by Rhodococcus sp. TK6 was determined with gas chromatography.

  • PDF

Trifunctional Amino Acid Cobalt(Ⅲ) Complexes of N,N'-Diethylethylenediamine-N,N'-di-α-butyrato Ligand

  • 이인경;전무진
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.433-436
    • /
    • 1996
  • Cobalt(Ⅲ) complexes of trifunctional amino acid and N,N'-diethylethylenediamine-N,N'-di-α-butyrate(deedba), s-cis-[Co(deedba)(L-aa)] (L-aa=S-methyl-L-cysteine, L-aspartic acid, L-glutamic acid) have been prepared from the reaction between the s-cis-[Co(deedba)(Cl2)]- complex and the corresponding amino acid. The amino acids have been found to coordinate through the amine and carboxylate groups. The S-methyl-L-cystene is coordinated not by the sulfur donor atom, but by the nitrogen and oxgen donor atoms, and the L-aspartic and L-glutamic acids are coordinated to the cobalt(Ⅲ) ion via formation of the five-membered glycinate chelate ring. Relatively small optical activity shown by the complexes is due to the chiral center present in the amino acids.