• Title/Summary/Keyword: Methyl Methacrylate

Search Result 589, Processing Time 0.027 seconds

EFFECT OF TIME AND TEMPERATURE ON THE MARGINAL FIT OF PROVISIONAL RESIN CROWN DURING POLYMERIZATION (임시 수복물 중합시 시간과 중합온도가 변연 적합도에 미치는 효과)

  • Youn Seung-Hwan;Oh Nam-Sik;Kim Il-Kyu;Oh Sung-Seop;Choi Jin-Ho;Kim Wang-Sik;Rim Young-Il
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.514-525
    • /
    • 2001
  • The purpose of this study was to compare the marginal fit of provisional restorations by differentiating the removal time and setting temperature during resin polymerization. After mixing autopolymerizing methyl methacrylate resin, the material was placed in a preformed resin shell crown. The crown was seated on a die with 1mm shoulder margin. Crowns were removed after 3, 4, 5, 6 minutes and polymerization was continued under the following conditions : $25^{\circ}C$ air, $30^{\circ}C,\;40^{\circ}C,\;50^{\circ}C,\;60^{\circ}C,\;70^{\circ}C$ water. After polymerization. the crown was sectioned. The marginal & occlusal discrepancies were measured. The mean marginal discrelpancies at 3 minutes, 4 minutes, 5 minutes and 6 minutes of removing time were $96.6{\mu}m.\;84.6{\mu}m,\;86.7{\mu}m$ and $105.6{\mu}m$. The mean occlusal discrepancies at 3 minutes, 4 minutes, 5 minutes and 6 minutes of removing time were $106.7{\mu}m,\;89.3{\mu}m,\;98.6{\mu}m$ and $127.7{\mu}m$. There was significant difference between 4 minutes group and 6 minutes group in occlusal discrepancies. The mean marginal & occlusal discrepancies for crowns polymerized in $25^{\circ}C$ air were $98.2{\mu}m$ and $124.1{\mu}m$. The crowns polymerized in $50^{\circ}C$ water demonstrated the smallest marginal & occlusal. discrepancies. The mean value of marginal & occlusal discrepancies in $50^{\circ}C$ water were $73.1{\mu}m$ and $77.5{\mu}m$. These values were smaller than that of $25^{\circ}C$ air. There were significant differences in the occlusal discrepancies between $25^{\circ}C$ air and water conditions of $50^{\circ}C$ water (${\alpha}=0.05$) but. no significant difference in marginal discrepancies. There was no significant difference in the interaction between time and temperature. 4 minutes waiting time & $50^{\circ}C$ water polymerizing condition produces the best fit at the margin of the provisional crown.

  • PDF

Fabrication and Characterization of UV-curable Conductive Transparent Film with Polyaniline Nanofibers (폴리아닐린 나노섬유를 이용한 광경화형 전도성 투명필름의 제조 및 특성)

  • Kim, Sung-Hyun;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.531-535
    • /
    • 2012
  • Conductive polyaniline (PANI) nanofibers in UV-curable resin were used for a transparent conductive film. The emeraldine-salt PANI (ES-PANI) nanofibers were prepared by chemical oxidation polymerization of aniline, which could be changed into emeraldine-base PANI by dedoping. EB-PANI nanofibers as a precursor for conductive fillers were thereby transformed into re-dpoed PANI (rES-PANI) by dodecylbenzenesulfonic acid in the UV-curable resin solution. rES-PANI nanofibers have high conductivity and long-term stability in the solution without a defect of nanostructure. The resulting conductive resin solution was proved to be highly stable where no precipitation of rES-PANI fillers was observed over a period of 3 months. The transparent film was spin-casted on a poly(methyl methacrylate) sheet of thickness ca. $5{\mu}m$. A surface resistance of $6.5{\times}10^8{\Omega}/sq$ and transmittance at 550 nm of 91.1% were obtained for the film prepared with a concentration of 1.4 wt% rES-PANI nanofibers in the solution. This transformation process of rES-PANI from ES-PANI by dedoping-redoping can be an alternative method for the preparation of an antistatic protection film with controllable surface resistance and optical transparencies with the PANI concentration in UV-curable solution.

Olefin Separation Membranes Based on PEO/PDMS-g-POEM Blends Containing AgBF4/Al(NO3)3 Mixed Salts (AgBF4/Al(NO3)3 혼합염이 포함된 PEO/PDMS-g-POEM 블렌드 기반의 올레핀 분리막)

  • Kim, Sang Jin;Jung, Jung Pyu;Park, Cheol Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.496-502
    • /
    • 2015
  • Facilitated transport is one of the possible solutions to simultaneously improve permeability and selectivity, which is challenging in conventional polymer-based membranes. Olefin/paraffin separation using facilitated transport membrane has received much attention as an alternative solution to the conventional distillation process. Herein, we report olefin separation composite membranes based on the polymer blends containing $AgBF_4/Al(NO_3)_3$ mixed salts. Free radical polymerization process was used to synthesize an amphiphilic graft copolymer of poly(dimethyl siloxane)-graft- poly(ethylene glycol) methyl ether methacrylate (PDMS-g-POEM). In addition, poly(ethylene oxide) (PEO) was introduced to the PDMS-g-POEM graft copolymer to form polymer blends with various ratios. The propylene/propane mixed-gas selectivity and permeance reached up to 5.6 and 10.05 GPU, respectively, when the PEO loading was 70 wt% in polymer blend. The improvement of olefin separation performance was attributed to the olefin facilitating silver ions as well as the highly permeable blend matrix. The stabilization of silver ions in the composite membrane was achieved through the introduction of $Al(NO_3)_3$ which suppressed the reduction of silver ions to silver particles.

Pelvic Symphyseal Distraction Osteotomy for Constipation Management Secondary to Pelvic Stenosis (골반강 협착증으로 인해 발생한 변비를 가진 고양이에서의 골반강 확장술을 이용한 치료 증례)

  • Oh, Kwang-Seon;Choi, Sung-Jin;Kim, Nam-Soo;Kim, Min-Su;Lee, Ki-Chang;Lee, Hae-Beom
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.527-530
    • /
    • 2014
  • A 7-year-old neutered male Korean domestic short-haired cat was referred to our clinic to treat constipation which had persisted for 6 months. The rectal examination revealed narrowing of the right lateral portion of the pelvic canal. A reduced pelvic canal diameter by pelvic fracture malunion was revealed on radiography. The pelvic canal diameter ratio measured from preoperative was 0.68. Based on rectal and radiographic examinations, constipation caused by pelvic canal narrowing was confirmed. Pelvic symphyseal distraction-osteotomy and iliac wedge osteotomy were performed. An iliac osteotomy of the ilium was performed to ease the pelvic symphyseal distraction. After the symphysis was split longitudinally, pelvic symphyseal distraction was maintained by using a spacer made of poly-methyl-methacrylate. The osteotomy of the ilium was fixed using a bone plate and screws. Increased pelvic canal diameter was confirmed on post-operative radiography and the postoperative pelvic canal diameter ratio was 0.91. The patient received antibiotics, NSAIDs, crystalloids and Lactulose for post-operative care. The cat recovered normal defecation abilities and did not have constipation at one week postoperatively. No episodes of constipation persisting longer than 6 months have been reported by owners in previous studies. Pelvic symphyseal distraction osteotomy and iliac wedge osteotomy may prove to be a useful surgical procedure to treat pelvic canal stenosis that is caused by pelvic fracture malunion.

Properties of Nanocomposites Based on Polymer Blend Containing PVDF, Carbon Fiber and Carbon Nanotube (PVDF를 포함한 고분자 블렌드와 탄소섬유/탄소나노튜브를 이용한 복합재료의 특성)

  • Kim, Jeong Ho;Son, Kwonsang;Lee, Minho
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2014
  • Nanocomposites based on poly(methyl methacrylate) (PMMA)/poly(vinylidene fluoride) (PVDF) and poly(ethylene terephthalate) (PET)/(PVDF) blended with carbon fibers (CF) and carbon nanotube (CNT) were prepared by melt mixing in the twin screw extruder. Morphologies of the PMMA/PVDF/CF/CNT and PET/PVDF/CF/CNT nanocomposites were investigated using SEM. The aggregation of CNT was observed in PMMA/PVDF/CF/CNT nanocomposites while the good dispersion of CNT was shown in PET/PVDF/CF/CNT nanocomposites. In SEM image of PET/PVDF/CF/CNT nanocomposite, the CNT were mainly located at the PET domain of phase-separated PET/PVDF blend due to the ${\pi}-{\pi}$ interaction between the phenyl ring of PET and graphite sheet of the CNT's surface. In addition, a fairly good compatibility between PET/PVDF matrix and CF was shown in the SEM image. In the case of PET/PVDF nanocomposites blended with the co-addition of CF and CNT, the volume electrical resistivity decreased while no change was observed in PMMA/PVDF/CF/CNT composites. The degree of CNT dispersion in morphology results was consistent with the electrical conductivity results. From the DSC results, the crystallization temperature (Tc) of PET/PVDF/CF/CNT nanocomposites increased due to the co-addition of CF and CNTs acting as a nucleating agent. Flexural modulus of PET/PVDF/CF/CNT were sharply enhanced due to increasing the interaction between PET and CF.

Development and Research of MMA Waterproof Coating and Waterproof System for Concrete Civil Structures (콘크리트 토목구조물 교면용 MMA 도막방수재 및 교면방수 시스템의 개발 연구)

  • Chul-Woo Lim;Sang-Ho Ji;Ki-Won An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.128-134
    • /
    • 2024
  • Asphalt-based waterproofing materials for bridge decks face issues such as softening or liquefaction of the material during the process of pouring hot asphalt concrete on top of the waterproofing layer. This leads to instability and reduced thickness of the waterproofing layer. To address these problems, new solutions beyond the existing materials, including the development and adoption of new materials, are required. Therefore, this study investigates the properties of MMA(Methyl Methacrylate) coating waterproofing material, which meets the basic physical properties for bridge deck waterproofing. We examined the overall quality standards in a system where the substrate concrete, waterproofing material, and paving layer are integrated. The study confirmed the applicability of MMA coating waterproofing material on bridge decks. The results indicate that a stable application of MMA coating waterproofing material for civil engineering structures' bridge decks can be achieved with a mix ratio of hard MMA resin : soft MMA resin : powder = 6 : 34 : 60. Additionally, when using emulsified asphalt with hardening characteristics for the adhesion between the dissimilar materials of MMA waterproofing and asphalt concrete, it is expected to meet the minimum quality standards of the Ministry of Land, Infrastructure, and Transport's 'Guidelines for Asphalt Concrete Pavement Construction (2021.07)'.

On the manufacturing of WPC (Wood Plastic Composites) with Heat-Catalyst Polymerization (I) - On the characteristics of composites made from monomer Methyl MethacryIate and several commercial woods in Korea (가열(加熱)·촉매중합법(觸媒重合法)에 의한 목재(木材)·고분자복합체(高分子複合體) 제조(製造)(I) - MMA에 의한 한국산(韓國産) 주요목재(主要木材)의 복합체특성(複合體特性))

  • Cho, Nam-Seok;Jo, Jae-Myeong;Ahn, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.3-16
    • /
    • 1974
  • One of the disadvantages of. wood and wood products is their hydroscopicity or dimensional instability. This is responsible for the loss of green volume of lumber as seasoning degrade. Dimensional stabilization is needed to substantially reduce seasoning defects and degrades and for increasing the serviceability of wood products. Recently, considerable world-wide attention has been drawn to the so-called Wood-Plastic Composites by irradiation-and heat-catalyst-polymerization methods and many research and developmental works have been reported. Wood-Plastic Composites are the new products having the superior mechanical and physical properties and the combinated characteristics of wood and plastic. The purpose of this experiment was to obtain the basic data for the improvement of wooden materials by manufacturing WPC. The species examined were Mulpurae-Namoo (Fraxinus, rhynchophylla), Sea-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acermono), Karae-Namoo(Juglans mandshurica) and Sanbud-Namoo (Prunus sargentii), used as blocks of type A ($3{\times}3{\times}40cm$) and type B ($5{\times}5{\times}60cm$), and were conditioned to about 10~11% moisture content before impregnation in materials humidity control room. Methyl methacrylate (MMA) as monomer and benzoyl peroxide (BPO) as initiator are used. The monomer containing BPO was impregnated into wood pieces in the vacuum system. After impregnation, the treated samples were polymerized with heat-catalyst methods. The immersed weights of monomer in woods are directly proportionated to the impregnation times. Monomer impregnation properties of Cheungcheung-Namoo, Mulpurae-Namoo and Seo-Namoo are relatively good, but in Karae-Namoo, it is very difficult to impregnate the monomer MMA. Fig. 3 shows the linear relation between polymer retentions in wood and polymerization times; that is, the polymer loadings are increasing with polymerization times. Furthermore species, moisture content, specific gravity and anatomical or conductible structure of wood, bulking solvents and monomers etc have effects on both of impregnation of monomer and polymer retention. Physical properties of treated materials are shown in table 3. Increasing rates of specific gravity are ranged 3 to 24% and volume swelling 3 to 10%. ASE is 20 to 46%, AE 14 to 50% and RWA 18 to 40%. Especially, the ASE in relation to absorption of liquid water increases approximately with increase of polymer content, although the bulking effect of the polymerization of monomer may also be influential. WPCs from Mulpurae-Namoo and Cheungcheung-Namoo have high dimensional stability, while its of Karae-Namoo and Seo-Namoo are-very low. Table 4 shows the mechanical properties of WPCs from 6 species. With its specific gravity and polymer loading increase, all mechanical properties are on the increase. Increasing rate of bending strength is 10 to 40%, compression strength 25 to 70%, ;impact bending absorbed energy 4 to 74% and tensile strength 18 to 56%. Mulpurae-Namoo and Cheungcheung-Namoo with high polymer content have considerable high increasing rate of strengths. But incase of Karae-Namoo with inferior monomer impregnation it is very low. Polymer retention in cell wall is 0.32 to 0.70%. Most of the polymer is accumulated in cell lumen. Effective. of polymer retention is 58.59% for Mulpurae-Namoo, 26.27% for Seo-Namoo, 47.98% for Cheungcheung-Namoo, 25.64% for Korosae-Namoo, 9.96% for Karae-Namoo and 25.84% for Sanbud-Namoo.

  • PDF

The Effect of Water Immersion on the Surface Strength and the Flexural Strength of the Acrylic Resin for Occlusal Appliances (교합장치용 아크릴레진의 표면경도와 굴곡강도에 대한 침수의 영향)

  • Lee, Hoy-Youn;Im, Yeong-Gwan;Kim, Byung-Gook;Lim, Hoi-Soon;Kim, Jae-Hyung
    • Journal of Oral Medicine and Pain
    • /
    • v.35 no.1
    • /
    • pp.75-81
    • /
    • 2010
  • By repeating nocturnal bruxism occlusal appliance's wearing condition that is used to cure temporomandibular disorders into the vitro experiment, research aims to find out how moisture infiltrated and drying cycle process affects on the surface microhardness of the resin for occlusal appliance and flexural strength. By utilizing resin for occlusal appliance which is the main component of poly methyl methacrylate, bar shaped sample was produced. For the resin sample utilized as the controlled group 1, the sample was infiltrated in the moisture for 7 days in the temperature of 37C. Then, the resin sample of the controlled group 2 was maintained in a dry condition for 7 days in the normal temperature. After that, each sample's surface microhardness and flexural strength were measured. For the resin sample that is utilized as the experimental sample, the sample was infiltrated in the moisture for 7 days in the temperature of 37C. Then, it was inundated for 8 hours a day and dried in the normal temperature for 16 hours with the continuous process of moisture infiltration and dry cycle process for 30 days. During this cycle process, sample's surface and flexural strength were measured in the 1st day, 7th day, and 30th day. Then, it was statistically analyzed to find out the difference of controlled and experiment group's surface microhardness and flexural strength. Results are 1. For the experimental and controlled group's surface microhardness of the resin for the occlusal appliance, it did not show any significant differences after moisture infiltration and dry cycle process repetition. 2. In case of the flexural strength for resin for the occlusal appliance, experimental group with moisture infiltration and dry cycle for 30 day process had greater effect than the experimental group at the 1st day and controlled group These results can be considered to be utilized from the patients of the temporomandibular disorders towards occlusal appliance used and maintained method.

Study on Wood-Plastic Combination - On the Penetration of MMA Polymer and Dimensional Stability - (복합목재(複合木材)(WPC)에 관(關)한 연구(硏究) - MMA Polymer의 침투(浸透)와 치수안정화(安定化) -)

  • Lee, Won-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.49-57
    • /
    • 1983
  • This study dealts with the penetration of methyl methacrylate(MMA) monomer-solvent system into five Korean major tree species, especially the Pinus koraiensis S. et Z., Pinus densiflora S. et Z., Larix leptoiepis Gordon, Quercus serrata Thunb. and Betula platyphylla var japonica Hara. In this report I described the results of the interaction between wood and polymer loading by catalyst-heat polymerization. On the other hand the influence of penetration of polymer loading on dimensional stabilization on WPC of Pinus koraiensis by catalyst-heat polymerization was also investigated.

  • PDF