The Effect of Water Immersion on the Surface Strength and the Flexural Strength of the Acrylic Resin for Occlusal Appliances

교합장치용 아크릴레진의 표면경도와 굴곡강도에 대한 침수의 영향

  • Lee, Hoy-Youn (School of Dentistry, Chonnam National University) ;
  • Im, Yeong-Gwan (Department of Oral medicine, Chonnam National University Hospital) ;
  • Kim, Byung-Gook (Department of Oral medicine, Dental Science Research Institute, Scool of Dentistry, Chonnam National University) ;
  • Lim, Hoi-Soon (Department of Oral medicine, Dental Science Research Institute, Scool of Dentistry, Chonnam National University) ;
  • Kim, Jae-Hyung (Department of Oral medicine, Dental Science Research Institute, Scool of Dentistry, Chonnam National University)
  • 이효언 (전남대학교 치의학전문대학원) ;
  • 임영관 (전남대학교병원 구강내과) ;
  • 김병국 (전남대학교 치의학연구소, 치의학전문대학원 구강내과학교실) ;
  • 임회순 (전남대학교 치의학연구소, 치의학전문대학원 구강내과학교실) ;
  • 김재형 (전남대학교 치의학연구소, 치의학전문대학원 구강내과학교실)
  • Received : 2010.01.20
  • Accepted : 2010.02.23
  • Published : 2010.03.30

Abstract

By repeating nocturnal bruxism occlusal appliance's wearing condition that is used to cure temporomandibular disorders into the vitro experiment, research aims to find out how moisture infiltrated and drying cycle process affects on the surface microhardness of the resin for occlusal appliance and flexural strength. By utilizing resin for occlusal appliance which is the main component of poly methyl methacrylate, bar shaped sample was produced. For the resin sample utilized as the controlled group 1, the sample was infiltrated in the moisture for 7 days in the temperature of 37C. Then, the resin sample of the controlled group 2 was maintained in a dry condition for 7 days in the normal temperature. After that, each sample's surface microhardness and flexural strength were measured. For the resin sample that is utilized as the experimental sample, the sample was infiltrated in the moisture for 7 days in the temperature of 37C. Then, it was inundated for 8 hours a day and dried in the normal temperature for 16 hours with the continuous process of moisture infiltration and dry cycle process for 30 days. During this cycle process, sample's surface and flexural strength were measured in the 1st day, 7th day, and 30th day. Then, it was statistically analyzed to find out the difference of controlled and experiment group's surface microhardness and flexural strength. Results are 1. For the experimental and controlled group's surface microhardness of the resin for the occlusal appliance, it did not show any significant differences after moisture infiltration and dry cycle process repetition. 2. In case of the flexural strength for resin for the occlusal appliance, experimental group with moisture infiltration and dry cycle for 30 day process had greater effect than the experimental group at the 1st day and controlled group These results can be considered to be utilized from the patients of the temporomandibular disorders towards occlusal appliance used and maintained method.

측두하악장애 치료를 위해 사용되는 야간 이갈이 교합장치의 착용 여건을 in vitro 실험으로 재현함으로써, 수분 침윤 및 건조 주기 반복 처리가 교합장치용 레진의 표면경도와 굴곡강도에 미치는 영향을 알아보고자 하였다. 폴리메틸메타크릴레이트를 주성분으로 하는 교합장치용 레진을 사용하여 막대형의 시편을 제작하였다. 대조군 1로 사용되는 레진 시편은 $37^{\circ}C$에서 7일간 수분에 침윤시킨 후, 그리고 대조군 2의 레진 시편은 상온에서 7일간 건조한 상태로 유지한 후 각각 시편의 표면경도와 굴곡강도를 측정하였다. 실험군으로 사용되는 레진 시편을 $37^{\circ}C$에서 7일간 수분에 침윤 시킨 후, 하루 8시간 동안 침수를 시키고 16시간 동안은 상온에서 건조를 시키는 수분 침윤 및 건조 주기 처리를 30일 동안 계속 하였다. 이러한 주기적 처리 1일째, 7일째, 30일째에 시편의 표면경도와 굴곡강도를 측정하였다. 대조군과 실험군의 표면경도와 굴곡강도의 차이에 대해 통계분석을 하여 다음과 같은 결과를 얻었다. 1. 실험군과 대조군의 교합장치용 레진의 표면경도는 수분 침윤 및 건조 주기의 반복 처리에도 유의한 차이를 보이지 않았다. 2. 교합장치용 레진의 굴곡강도는 수분 침윤 및 건조 주기를 30일간 처리한 실험군이 1일째의 실험군 및 제1대조군에 비해 더 컸다. 이러한 결과를 측두하악장애 환자들에서 교합장치를 사용하고 보관하는 방법에 고려할 수 있을 것으로 사료된다.

Keywords

References

  1. Okeson JP. Bell's orofacial pains: The clinical management of orofacial pain. 6th edit. 2005, Quintessence publ Co. Inc.
  2. Okeson JP. Management of temporomandibular disorders and occlusion. 5th edit. 2003, Mosby Co, Inc.
  3. 정대연, 한경수, 이유미, 최희인, 이숙향. 교합장치의 장착이 하악의 발음운동과 음성의 인식에 미치는 영향. 대한구강내과학회지 2004;29:367-383.
  4. 박란, 심준성, 한동후. Abrasion resistance of denture base resin including vinyl oligosilsesquioxane. 대한보철학회지 2003;41:626-639.
  5. Aydin AK, Terzioglu H, Akinay AE, Ulubayram K, Hasirci N. Bond strength and failure analysis of lining materials to denture resin. Dent Mater 1999;15:211-218. https://doi.org/10.1016/S0109-5641(99)00038-X
  6. Takahashi Y, Chai J, Kawaguchi M. Effect of water sorption on the resistance to plastic deformation of a denture base material relined with four different denture reline materials. Int J Prosthodont 1998;11:49-54.
  7. Dar-Odeh NS, Harrison A, Abu-Hammad O. An evaluation of self-cured and visible light-cured denture base materials when used as a denture base repair material. J Oral Rehabil 1997;24:755-760. https://doi.org/10.1046/j.1365-2842.1997.00571.x
  8. J. dos Santos Nunes Reis, C. Vergani, A. Pavarina, E. Giampaolo, A. Machado. Effect of relining, water storage and cyclic loading on the flexural strength of a denture base acrylic resin. J Dentist 2006;34:420-426. https://doi.org/10.1016/j.jdent.2005.10.001
  9. von Fraunhofer JA, Suchatlampong C. The surface characteristics of denture base polymers. J Dentist 1975;3:105-109. https://doi.org/10.1016/0300-5712(75)90060-3
  10. Woelfel JB, Paffenbarger GC, Sweeney WT. Some physical properties of organic denture base materials. J Am Dent Assoc 1963;67:499-504.
  11. Craig RG, Powers JM. Restorative dental materials. 11th ed., St Louis, 2001, Elsevier, pp. 102-110.
  12. Arima T, Murata H, Hamada T. Properties of highly cross-linked autopolymerizing reline acrylic resins. J Prosthet Dent 1995;73:55-59. https://doi.org/10.1016/S0022-3913(05)80273-2
  13. Archadian N, Kawano F, Ohguri T, Ichikawa T, Matsumoto N. Flexural strength of rebased denture polymers. J Oral Rehabil 2000;27:690-696. https://doi.org/10.1046/j.1365-2842.2000.00552.x
  14. Pavarina AC, Neppelenbroek KH et al. Effect of microwave disinfection on the flexural strength of hard chairside reline resins. J Dentist 2005;33:741-748. https://doi.org/10.1016/j.jdent.2005.02.003
  15. Phoenix RD. Denture base resins. In: Anusavice KJ, editor. Phillips' science of dental materials. St Louis, 2003, Elsevier, pp. 721-757.
  16. Merchant VA. An update on infection control in the dental laboratory. Quintessence Dent Technol 1997;20:157-169.
  17. De Clerck JP. Microwave polymerization of acrylic resins used in dental prostheses. J Prosthet Dent 1987;57:650-658. https://doi.org/10.1016/0022-3913(87)90353-2
  18. Douglas WH, Bates JF. The determination of residual monomer in polymethylmethacrylate denture-base resins. J Mater Sci 1978;13:2600-2064. https://doi.org/10.1007/BF02402746
  19. Dogan A, C¸ evik NN, Usanmaz A. The effect of preparation conditions of acrylic denture base materials on the level of residual monomer, mechanical properties and water absorption. J Dentist 1995;23:313-318. https://doi.org/10.1016/0300-5712(94)00002-W
  20. Nara Hellen Campanha, a Ana Claudia Pavarina, Carlos Eduardo Vergani, Ana Lucia Machado. Effect of microwave sterilization and water storage on the Vickers hardness of acrylic resin denture teeth. J Prosthet Dent 2005;93:483-487. https://doi.org/10.1016/j.prosdent.2005.02.016