• Title/Summary/Keyword: Methods of Mineral Engineering

Search Result 218, Processing Time 0.029 seconds

Aquifer Characterization Based on Geophysical Methods and Application Analysis on Past Cases (물리탐사에 기초한 대수층 특성화 및 적용 사례 분석)

  • Jeong, Juyeon;Kim, Bitnarae;Song, Seo Young;Joung, In Seok;Song, Sung-Ho;Nam, Myung Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.1-23
    • /
    • 2022
  • For its essential importance as a resource, sustainable development of groundwater has been major research interests for many decades. Conventional characterization of aquifer and groundwater has relied on borehole data from observation well. Although borehole data provide useful information on yield and flow of groundwater, it is often difficult and sometimes costly to estimate the spatial distribution of groundwater in entire aquifer. Geophysical probing is an alternative techique that provides such information due to its capability to image subsurface structures as well as to delineate spatial distribution of hydraulic parameters. This study presents various technical information about geophysical probing to estimate main characteristics of aquifer for groundwater exploitation. Subsequently, we analyzed representative cases, in which geophysical methods were applied to identify the location of the groundwater, classify freshwater and brine, derive hydraulic constants, and monitor groundwater.

Assessment of groundwater contamination susceptibility based on water chemistry data - A review

  • Kim, Kang-Joo;Natarajan Rajmohan;Chae, Gi-Tak;Yun, Seong-Taek
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.12-15
    • /
    • 2004
  • Groundwater contamination susceptibility studies have many advantages in groundwater monitoring, management and future planning. Several methods have been developed and applied to the groundwater regime through out the world. However, each and every method has some limitations. In this study, a detailed review was carried out about the already existing methods for groundwater contamination susceptibility studies. Additionally, a new parameter called mineral dissolution factor is recommended for groundwater contamination susceptibility studies. This parameter is applied for groundwate contamination susceptibility studies in Namwon area, Korea. The result of this approach suggests that mineral dissolution parameter could overcome the limitations as observed in the earlier methods.

  • PDF

Mineral content analysis of root canal dentin using laser-induced breakdown spectroscopy

  • Eren, Selen Kucukkaya;Uzunoglu, Emel;Sezer, Banu;Yilmaz, Zeliha;Boyaci, Ismail Hakki
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.11.1-11.10
    • /
    • 2018
  • Objectives: This study aimed to introduce the use of laser-induced breakdown spectroscopy (LIBS) for evaluation of the mineral content of root canal dentin, and to assess whether a correlation exists between LIBS and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods by comparing the effects of irrigation solutions on the mineral content change of root canal dentin. Materials and Methods: Forty teeth with a single root canal were decoronated and longitudinally sectioned to expose the canals. The root halves were divided into 4 groups (n = 10) according to the solution applied: group NaOCl, 5.25% sodium hypochlorite (NaOCl) for 1 hour; group EDTA, 17% ethylenediaminetetraacetic acid (EDTA) for 2 minutes; group NaOCl+EDTA, 5.25% NaOCl for 1 hour and 17% EDTA for 2 minutes; a control group. Each root half belonging to the same root was evaluated for mineral content with either LIBS or SEM/EDS methods. The data were analyzed statistically. Results: In groups NaOCl and NaOCl+EDTA, the calcium (Ca)/phosphorus (P) ratio decreased while the sodium (Na) level increased compared with the other groups (p < 0.05). The magnesium (Mg) level changes were not significant among the groups. A significant positive correlation was found between the results of LIBS and SEM/EDS analyses (r = 0.84, p < 0.001). Conclusions: Treatment with NaOCl for 1 hour altered the mineral content of dentin, while EDTA application for 2 minutes had no effect on the elemental composition. The LIBS method proved to be reliable while providing data for the elemental composition of root canal dentin.

A Brief review of Aragonite Precipitated Calcium Carbonate (PCC) Synthesis Methods and Its Applications

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Ahn, Ji Whan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.443-455
    • /
    • 2017
  • This article provides an exclusive overview of the synthesized aragonite precipitated calcium carbonate and its applications in various fields. The last decade has seen a steady increase in the number of publications describing the synthesis, characterization and applications of calcium carbonate morphologies. Mainly, two kinds of processes have been developed for the synthesis of aragonite precipitated calcium carbonate under controlled temperature, concentrations and aging, and the final product is single-phase needle-like aragonite precipitated calcium carbonate formed. This review is mainly focused on the history of developed methods for synthesizing aragonite PCC, crystal growth mechanisms and carbonation kinetics. Carbonation is an economic, simple and ecofriendly process. Aragonite PCC is a new kind of functional filler in the paper and plastic industries, nowadays; aragonite PCC synthesis is the most exciting and important industrial application due to numerous attractive properties. This paper describes the aragonite PCC synthetic approaches and discusses some properties and applications.

Rapid Sintering and Synthesis of TiAl by High-Frequency Induction Heating and its Mechanical properties (고주파유도 가열에 의한 나노구조의 TiAl 급속소결과 합성 및 기계적 성질)

  • Kim, Na-Ri;Na, Kwon-Il;Kim, Wonbaek;Cho, Sung-Wook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.989-994
    • /
    • 2010
  • A nanopowder of TiAl was synthesized by high energy ball milling. Dense nanostuctured TiAl was consolidated using a high frequency induction heated sintering method within 2 minutes from mechanically synthesized powders of TiAl and horizontally milled powders of Ti+Al. Properties of the TiAl obtained using the two methods were compared. The grain size and hardness of TiAl sintered from horizontally milled Ti+Al powders and high energy ball milled TiAl powder were 40 nm, 20 nm, and $630kg/mm^2$, $700kg/mm^2$, respectively.

A Study on Mix Design of Concrete Pavement on Early Strength Development in Cool Weather Condition (저온 환경에서의 조기강도 발현을 위한 콘크리트 포장 배합 연구)

  • Ryu, SungWoo;Kim, JinHwan;Hong, SeungHo;Park, JeJin
    • International Journal of Highway Engineering
    • /
    • v.19 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • PURPOSES : This paper focuses on strength development according to the mix design with cement type and mineral admixture from laboratory and field tests in cool weather. METHODS : Two methods evaluated the mix design of concrete pavement in cool weather. Firstly, laboratory tests including slump, air contents, setting time, strength, maturity, and freezing-thawing test were conducted. Three alternatives were selected based on the tests. Secondly, a field test was conducted and the optimum mix design in cool weather was suggested. RESULTS : It is an evident from the laboratory test that a mix with type III cement showed better performance than the one with type I cement. There was a delay in strength development of a mix with mineral admixture compared to mix design without any mineral admixture. In the field test, type III cement+flyash 20% mix design proved the best performance. CONCLUSIONS : For concrete pavement in cool weather, mix design using type III cement could overcome the strength delay due to mineral admixture. Moreover, it is possible to make sure of durability of pavement. Therefore, strength and durability problems due to cool weather would decrease.

Applicability of Mineral-controled Water from Deep Ocean Water for Industrial Utilization (해양심층수 수질조정수의 산업소재 적용성 평가)

  • Kim H.J.;Moon D.S.;Cho S.Y.;Lee Y.S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.23-28
    • /
    • 2004
  • Various merchandises have appeared in recent markets of mineral water, beverage, food and cosmetics etc. These are almost manufactured by adding raw seawater, desalinated water, brine or salt from Deep Ocean Water(DOW), and it intimated desalination and mineral extraction are key techniques for DOW business. This study aims to verify the functional performance of mineral-controlled water produced by the basic methods which were proposed by authors for industrial purposes. This water revealed the possibility of the radical scavenging effects and moisturizing capability.

  • PDF

Time-lapse Resistivity Investigations for Imaging Subsurface Grout during Ground Stabilization

  • Farooq, Muhammad;Park, Sam-Gyu;Kim, Jung-Ho;Song, Young-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.241-244
    • /
    • 2007
  • Cement-grouts are injected into limestone cavities beneath the road in the project area, in order to improve strength and reduce permeability; the extent to which grout has penetrated in cavities need to be monitored in order to determined effectiveness of cement-grout. Geophysical approaches, offer great potential for monitoring the grout injection process in a fast and cost-effective way as well as showing whether the grout has successfully achieved the target. This paper presents the ability of surface electrical resistivity to investigate the verification of the grout placement. In order to image the cement-grout, time-lapse surface electrical resistivity surveys were conducted to compare electrical resistivity images before and after injection. Cement-grout was imaged as anomalies exhibiting low resistivity than the surrounding rocks. In accordance with field monitoring, laboratory study was also designed to monitor the resistivity changes of cement-grout specimens with time-lapse. Time-lapse laboratory measurements indicated that electrical methods are good tool to identify the grouted zone. Pre-and post grouting electrical images showed significant changes in subsurface resistivity at grouted zone. The study showed that electrical resistivity imaging technology can be a useful tool for detecting and evaluating changes in subsurface resistivity due to the injection of the grout.

  • PDF

Selection Technique of Drilling, Completion, and Stimulation Considering Reservoir Characteristics of Coalbed Methane Reservoir, Indonesia (인도네시아 석탄층 메탄가스(CBM) 저류층 특성을 고려한 시추·완결·자극 기법 선정 연구)

  • Choi, Jun Hyung;Han, Jeong-Min;Lee, Dae Sung
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.455-466
    • /
    • 2014
  • We investigated reservoir properties of coalbed methane and typical development of drilling, completion, and stimulation methods. We optimized selection technique for development methods by consifering characteristics of coalbed methane resercoir in the San Juan, Black Warrior and Powder River basins of United States. Finally, well-optimized development methods for coalbed methane in the Barito Basin, Indonesia are suggested. This study may be useful to select economical and efficient drilling, completion, and stimulation methods in coalbed methane development especially in Indonesia.

Electrical Resistivity Survey on Paved Surface and Case Studies (포장된 지표에서의 전기비저항 탐사 및 사례 연구)

  • Juyeon Jeong;Myungjin Nam
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.295-315
    • /
    • 2024
  • Urban development and the expansion of electrical resistivity surveying applications have increased the need for soil and underground structure investigations on paved surfaces. Traditional methods involved drilling through the pavement or surveying surrounding soil. Recently, non-invasive surveying techniques have been developed. This paper analyzes these methods, categorizing them into galvanic methods (including drilling and flat ground electrodes) and capacitive coupling methods. By examining case studies, it suggests selecting the appropriate method based on the pros and cons of each and the specific site characteristics. The paper also discusses the applicability and limitations of electrical resistivity surveying through various examples.