Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.
Kim, Yeon Soo;Jeon, Joongoo;Song, Chang Hyun;Kim, Sung Joong
Nuclear Engineering and Technology
/
v.52
no.12
/
pp.2836-2846
/
2020
During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk relies predominantly on empirical correlations. It is therefore necessary to develop a proper methodology for flammability evaluation of H2/CO mixtures at ex-vessel phases characterized by three factors: CO concentration, high temperature, and diluents. The developed methodology adopted Le Chatelier's law and a calculated non-adiabatic flame temperature model. The methodology allows the consideration of the individual effect of the heat transfer characteristics of hydrogen and carbon monoxide on low flammability limit prediction. The accuracy of the developed model was verified using experimental data relevant to ex-vessel phase conditions. With the developed model, the prediction accuracy was improved substantially such that the maximum relative prediction error was approximately 25% while the existing methodology showed a 76% error. The developed methodology is expected to be applicable for flammability evaluation in chemical as well as NPP industries.
Young-Jin Jung;Ji-Soo Hong;Sol-Ip Kim;Sung-Woo Kang
Journal of the Korea Safety Management & Science
/
v.26
no.1
/
pp.39-44
/
2024
In order to prevent accidents via defective ammunition, this paper analyzes recent research on ammunition life prediction methodology. This workanalyzes current shelf-life prediction approaches by comparing the pros and cons of physical modeling, accelerated testing, and statistical analysis-based prediction techniques. Physical modeling-based prediction demonstrates its usefulness in understanding the physical properties and interactions of ammunition. Accelerated testing-based prediction is useful in quickly verifying the reliability and safety of ammunition. Additionally, statistical analysis-based prediction is emphasized for its ability to make decisions based on data. This paper aims to contribute to the early detection of defective ammunition by analyzing ammunition life prediction methodology hereby reducing defective ammunition accidents. In order to prepare not only Korean domestic war situation but also the international affairs from Eastern Europe and Mid East countries, it is very important to enhance the stability of organizations using ammunition and reduce costs of potential accidents.
Clusters can provide scalable and flexible architectures for parallel computing servers and data centers. Their performance prediction has been a very challenging issue. Existing performance measurement methodologies are able to measure the performance of servers already constructed. Thus they cannot provide a way to predict the overall system performance in advance when designing the system at the initial phase or adding more nodes for more capacity. Therefore, the performance modeling and prediction methodology for large-scale clusters is highly required. In this paper, we suggest a methodology to predict the performance of large-scale clusters, which consists of measurement, modeling and prediction steps. We apply the methodology to a real cluster server and show its usefulness.
MRSM(modified response surface methodology)-2 model is presented for the prediction of boiling points in combustible solution of quaternary systems. This model requires only normal boiling points of pure substances and group-group parameters which are based on the group-group concepts without the use of experimental data under consideration. By means of this methodology, it is possible to predict the boiling points of the combustible mixture of quaternary systems by plotting of isothermal lines using computer graphics. The proposed methodology has been tested and compared successfully with reported boiling points in journals for the combustible solution of quaternary systems. It is hoped eventually that this methodology will permit prediction of the flash point and flammability limit for the combustible mixture of multicomponent systems.
Price prediction is essential to decisions of investment and shipment in oak mushroom cultivation. But predicting the prices of oak mushroom is very difficult because there are so many uncertain factors affecting the demand and the supply in the market. The Box-Jenkins methodology is one of strong tools in price prediction especially for the short-term using historical observations of time series. In this paper, the Box-Jenkins methodology is applied to find a model to forecast future oak mushroom prices. And out-of-sample test was conducted to check out the prediction accuracy. The result shows the high accuracy except for market disturbance period affected by unexpected weather change and reveals the usefulness of the model.
Flash points ire used to classify flammable liquids according to their relative flammability. Such a classification is important for the safe handling of flammable liquids which constitute the solvent mixtures. MRSM(modified response surface methodology)-1 and MRSM-2 models we suggested for the prediction of the flash points in the flammable ternary system. By means of this methodology, it is possible to predict the flash points of the flammable mixtures system using computer graphics in the triangular coordinate for the ternary system. The proposed methodology(MRSM) has been tested and compared successfully with previously reported flash points in journal for the ternary system.
Reliability plays a pivotal role in products safety and quality. DoD RIAC recently developed a new reliability prediction methodology, $217Plus^{TM}$, for electronic systems. It officially replaces the well-known MIL-HDBK-217 and is expected to be widely used. Although theoretic study about $217Plus^{TM}$ and its application towards field systems seem to be attractive, it is also desirable to understand the general background of its development. In this paper, we performed a historical review of the arenas related to reliability prediction. Due to the vast of materials, our scope was limited to the development of $217Plus^{TM}$. We first reviewed Rome Laboratory and RIAC. We then explained the development course of reliability methods, MIL-HDBK-217, PRISM, and 217-Plus. This review will form not only a good understanding of the methodology but a basis for future study. We conclude this study with provision of future research areas.
Moon, Seongin;Han, Seongjin;Kang, To;Han, Soonwoo;Kim, Kyungmo;Yu, Yongkyun;Eom, Joseph
Nuclear Engineering and Technology
/
v.53
no.4
/
pp.1199-1209
/
2021
The detection of unexpected loose parts in the primary coolant system in a nuclear power plant remains an extremely important issue. It is essential to develop a methodology for the localization and mass estimation of loose parts owing to the high prediction error of conventional methods. An effective approach is presented for the localization and mass estimation of a loose part using machine-learning and deep-learning algorithms. First, a methodology was developed to estimate both the impact location and the mass of a loose part at the same times in a real structure in which geometric changes exist. Second, an impact database was constructed through a series of impact finite-element analyses (FEAs). Then, impact parameter prediction modes were generated for localization and mass estimation of a simulated metallic loose part using machine-learning algorithms (artificial neural network, Gaussian process, and support vector machine) and a deep-learning algorithm (convolutional neural network). The usefulness of the methodology was validated through blind tests, and the noise effect of the training data was also investigated. The high performance obtained in this study shows that the proposed methodology using an FEA-based database and deep learning is useful for localization and mass estimation of loose parts on site.
Cho, Yoon-Sung;Gilsoo Jang;Kwon, Sae-Hyuk;Yanchun Wang
KIEE International Transactions on Power Engineering
/
v.11A
no.4
/
pp.15-20
/
2001
Power system stability is correlated with system structure, disturbances and operating conditions, and power flows on transmission lines are closely related with those conditions. This paper proposes a methodology to identify correlative power flows for power system transient and small-signal stability prediction. In transient stability sense, the Critical Clearing Time is used to select some dominant contingencies, and Transient Stability Prediction index is proposed for the quantitative comparison. For small-signal stability discusses a methodology to identify crucial transmission lines for stability prediction by introducing a sensitivity factor based on eigenvalue sensitivity technique. On-line monitoring of the selected lines enables to predict system stability in real-time. Also, a procedure to make a priority list of monitored transmission lines is proposed. The procedure is applied to a test system, and it shows capabilities of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.