• Title/Summary/Keyword: Method of Size Optimization

Search Result 663, Processing Time 0.025 seconds

Structural design methodology for lightweight supporting structure of a multi-rotor wind turbine

  • Park, Hyeon Jin;Oh, Min Kyu;Park, Soonok;Yoo, Jeonghoon
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.291-301
    • /
    • 2022
  • Although mostly used in wind turbine market, single rotor wind turbines have problems with transportation and installation costs due to their large size. In order to solve such problems, multi-rotor wind turbine is being proposed; however, light weight design of multi-rotor wind turbine is required considering the installation at offshore or deep sea. This study proposes the systematic design process of the multi-rotor wind turbine focused on its supporting structure with simultaneous consideration of static and dynamic behaviors in an ideal situation. 2D and successive 3D topology optimization process based on the density method were applied to minimize the compliance of supporting structure. To realize the conceptual design obtained by topology optimization for manufacturing feasibility, the derived 3D structure was modified to have shell structures and optimized again through parametric design using the design of experiments and the response surface method for detail design of their thicknesses and radii. The resultant structure was determined to satisfy the stress and the buckling load constraint as well as to minimize the weight and the resultant supporting structure were verified numerically.

An Optimization Method for BAQ(Block Adaptive Quantization) Threshold Table Using Real SAR Raw Data (영상레이다 원시데이터를 이용한 BAQ(Block Adaptive Quantization) 최적화 방법)

  • Lim, Sungjae;Lee, Hyonik;Kim, Seyoung;Nam, Changho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.187-196
    • /
    • 2017
  • The size of raw data has dramatically increased due to the recent trend of Synthetic Aperture Radar(SAR) development plans for high resolution and high definition image acquisition. The large raw data has an impact on satellite operability due to the limitations of storage and transmission capacity. To improve the SAR operability, the SAR raw data shall be compressed before transmission to the ground station. The Block Adaptive Quantization (BAQ) algorithm is one of the data compression algorithm and has been used for a long time in the spaceborne SAR system. In this paper, an optimization method of BAQ threshold table is introduced using real SAR raw data to prevent the degradation of signal quality caused by data compression. In this manner, a new variation estimation strategy and a new threshold method for block type decision are introduced.

An Optimization of Representation of Boolean Functions Using OPKFDD (OPKFDD를 이용한 불리안 함수 표현의 최적화)

  • Jung, Mi-Gyoung;Lee, Hyuck;Lee, Guee-Sang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.781-791
    • /
    • 1999
  • DD(Decision Diagrams) is an efficient operational data structure for an optimal expression of boolean functions. In a graph-based synthesis using DD, the goal of optimization decreases representation space for boolean functions. This paper represents boolean functions using OPKFDD(Ordered Pseudo-Kronecker Functional Decision Diagrams) for a graph-based synthesis and is based on the number of nodes as the criterion of DD size. For a property of OPKFDD that is able to select one of different decomposition types for each node, OPKFDD is variable in its size by the decomposition types selection of each node and input variable order. This paper proposes a method for generating OPKFDD efficiently from the current BDD(Binary Decision Diagram) Data structure and an algorithm for minimizing one. In the multiple output functions, the relations of each function affect the number of nodes of OPKFDD. Therefore this paper proposes a method to decide the input variable order considering the above cases. Experimental results of comparing with the current representation methods and the reordering methods for deciding input variable order are shown.

  • PDF

Necessity of Construction Using Designed Structure (설계된 구조물을 사용한 건설의 필요성)

  • 김덕현;한봉구
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.428-434
    • /
    • 2002
  • Almost all buildings/infrastructures made of composite materials are fabricated without proper design. Unlike airplane or automobile parts, prototype test is impossible. One cannot destroy 10 story buildings or 100 meter-long bridges. In order to realize “composites in construction”, the following subjects must be studied in detail, for his design: Concept optimization, Simple method of analysis, Folded plate theory, Size effects in failure, and Critical frequency Unlike the design procedures with conventional materials, his design should include material design, selection of manufacturing method, and quality control methods, in addition to the fabrication method.

  • PDF

On boundary discretization and integration in frequency-domain boundary element method

  • Fu, Tia Ming;Nogami, Toyoaki
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.339-345
    • /
    • 1998
  • The computation size and accuracy in the boundary element method are mutually coupled and strongly influenced by the formulations in boundary discretization and integration. This aspect is studied numerically for two-dimensional elastodynamic problems in the frequency-domain. The localized nature of error is observed in the computed results. A boundary discretization criterion is examined. The number of integration points in the boundary integration is studied to find the optimum number for accuracy. Useful information is obtained concerning the optimization in boundary discretization and integration.

Design and Optimization of an Knee Joint of Fully-active Transfemoral Prosthesis for Stair Walking (계단 보행을 위한 능동형 대퇴의지 무릎 관절의 설계 및 최적화)

  • Ahn, Hyoung-Jong;Lee, Kwang-Hee;Hong, Yi;Lee, Chul-Hee
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2016
  • In this study, a fully active transfemoral prothesis with a knee joint is designed considering stair walking conditions. Since the torque at the knee joint required for stair walking condition is relative high compared with the one in normal walking condition, the proposed design has high torque generating mechanism. Moreover, the transfemoral prothesis is designed in compact size to reduce its weight, which is related to comfortable fit and fatigue of patients. Flat type BLDC motor is used for simple and compact structure and various components are used to generate required torque with target working angle and speed. The weight reduction of structure is carried out using optimization method after the initial design process is complete. The optimization is conducted under the load conditions of stair walking. The optimized design is validated via finite element analysis and experiments. As a result, the weight is reduced using topology and shape optimization but maintaining the safety of structure. Also the space efficiency is improved due to its compact size.

Stability of an improved optimization iterative algorithm to study vibrations of the multi-scale solar cells subjected to wind excitation using Series-Fourier algorithm

  • Jing Pan;Yi Hu;Guanghua Zhang
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.45-61
    • /
    • 2024
  • This research explores the domain of organic solar cells, a photovoltaic technology employing organic electronics, which encompasses small organic molecules and conductive polymers for efficient light absorption and charge transport, leading to electricity generation from sunlight. A computer simulation is employed to scrutinize resonance and dynamic stability in OSCs, with a focus on size effects introduced by nonlocal strain gradient theory, incorporating additional terms in the governing equations related to displacement and time. Initially, the Navier method serves as an analytical solver to delve into the dynamics of design points. The accuracy of this initial step is verified through a meticulous comparison with high-quality literature. The findings underscore the substantial impact of viscoelastic foundations, size-dependent parameters, and geometric factors on the stability and dynamic deflection of OSCs, with a noteworthy emphasis on the amplified influence of size-dependent parameters in higher values of the different layers' thicknesses.

Development of an User Interface Design Method using Adaptive Genetic Algorithm (적응형 유전알고리즘을 이용한 사용자 인터페이스 설계 방법 개발)

  • Jung, Ki-Hyo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.3
    • /
    • pp.173-181
    • /
    • 2012
  • The size and layout of user interface components need to be optimally designed in terms of reachability, visibility, clearance, and compatibility in order for efficient and effective use of products. The present study develops an ergonomic design method which optimizes the size and layout of user interface components using adaptive genetic algorithm. The developed design method determines a near-optimal design which maximizes the aggregated score of 4 ergonomic design criteria (reachability, visibility, clearance, and compatibility). The adaptive genetic algorithm used in the present study finds a near-optimum by automatically adjusting the key parameter (probability of mutation) of traditional genetic algorithm according to the characteristic of current solutions. Since the adaptive mechanism partially helps to overcome the local optimality problem, the probability of finding the near-optimum has been substantially improved. To evaluate the effectiveness of the developed design method, the present study applied it to the user interface design for a portable wireless communication radio.

RELATIONSHIP BETWEEN ERROR DIFFUSION COEFFICIENTS, OBJECT SIZE AND OBJECT POSITION FOR CGH

  • Nishi, Susumu;Tanaka, Ken-ichi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.492-497
    • /
    • 2009
  • Computer-Generated Hologram (CGH) is made for three dimensional image of a virtual object. Error diffusion method is used for the phase quantization of CGH, and it is known to be effective to the image quality improvement of the reconstructed image. However, the image quality of the reconstructed image from the CGH using error diffusion method depends on the selection of error diffusion coefficient. In this paper, we derived the relational expression to obtain the error diffusion coefficient from the position of the input object and size of the input object for CGH. As a result, the method of this thesis was able to obtain an excellent reconstructed image compared with the case to derive the error diffusion coefficient from only the position of the input image.

  • PDF

High-velocity powder compaction: An experimental investigation, modelling, and optimization

  • Mostofi, Tohid Mirzababaie;Sayah-Badkhor, Mostafa;Rezasefat, Mohammad;Babaei, Hashem;Ozbakkaloglu, Togay
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.145-161
    • /
    • 2021
  • Dynamic compaction of Aluminum powder using gas detonation forming technique was investigated. The experiments were carried out on four different conditions of total pre-detonation pressure. The effects of the initial powder mass and grain particle size on the green density and strength of compacted specimens were investigated. The relationships between the mentioned powder design parameters and the final features of specimens were characterized using Response Surface Methodology (RSM). Artificial Neural Network (ANN) models using the Group Method of Data Handling (GMDH) algorithm were also developed to predict the green density and green strength of compacted specimens. Furthermore, the desirability function was employed for multi-objective optimization purposes. The obtained optimal solutions were verified with three new experiments and ANN models. The obtained experimental results corresponding to the best optimal setting with the desirability of 1 are 2714 kg·m-3 and 21.5 MPa for the green density and green strength, respectively, which are very close to the predicted values.