• 제목/요약/키워드: Method Of Characteristics (MOC)

검색결과 35건 처리시간 0.025초

Improvements of the CMFD acceleration capability of OpenMOC

  • Wu, Wenbin;Giudicelli, Guillaume;Smith, Kord;Forget, Benoit;Yao, Dong;Yu, Yingrui;Luo, Qi
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2162-2172
    • /
    • 2020
  • Due to its computational efficiency and geometrical flexibility, the Method of Characteristics (MOC) has been widely used for light water reactor lattice physics analysis. Usually acceleration methods are necessary for MOC to achieve acceptable convergence on practical reactor physics problems. Among them, Coarse Mesh Finite Difference (CMFD) is very popular and can drastically reduce the number of transport iterations. In OpenMOC, CMFD acceleration was implemented but had the limitation of supporting only a uniform CMFD mesh, which would often lead to splitting MOC source regions, thus creating an unnecessary increase in computation and memory use. In this study, CMFD acceleration with a non-uniform Cartesian mesh is implemented into OpenMOC. We also propose a quadratic fit based CMFD prolongation method in the axial direction to further improve the acceleration when multiple MOC source regions are contained in one CMFD coarse mesh. Numerical results are presented to demonstrate the improvement of the CMFD acceleration capability in OpenMOC in terms of both efficiency and stability.

Acceleration of step and linear discontinuous schemes for the method of characteristics in DRAGON5

  • Hebert, Alain
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1135-1142
    • /
    • 2017
  • The applicability of the algebraic collapsing acceleration (ACA) technique to the method of characteristics (MOC) in cases with scattering anisotropy and/or linear sources was investigated. Previously, the ACA was proven successful in cases with isotropic scattering and uniform (step) sources. A presentation is first made of the MOC implementation, available in the DRAGON5 code. Two categories of schemes are available for integrating the propagation equations: (1) the first category is based on exact integration and leads to the classical step characteristics (SC) and linear discontinuous characteristics (LDC) schemes and (2) the second category leads to diamond differencing schemes of various orders in space. The acceleration of these MOC schemes using a combination of the generalized minimal residual [GMRES(m)] method preconditioned with the ACA technique was focused on. Numerical results are provided for a two-dimensional (2D) eight-symmetry pressurized water reactor (PWR) assembly mockup in the context of the DRAGON5 code.

특성곡선 해법 설계 극초음속 노즐의 경계층 보정 (Boundary Layer Correction of Hypersonic Wind-tunnel Nozzle Designed by the Methods of Characteristics)

  • 김소연;김성돈;정인석;이종국;최정열
    • 한국항공우주학회지
    • /
    • 제42권12호
    • /
    • pp.1028-1036
    • /
    • 2014
  • 연구에서는 MOC 및 CFD를 이용한 극초음속 노즐 설계 절차를 수립하였다. MOC를 이용하여 설계된 비점성 노즐 형상에 대하여, 점성 유체 전산 해석을 통하여 경계층 두께를 산출하여 노즐 형상을 보정하였다. 여러 가지의 경계층 두께 정의를 비교한 결과, 노즐 단면 최대 속력의 95% 속력을 가지는 경계층 두께의 정의가 설계 마하수를 가장 잘 만족하는 것으로 여겨진다. 노즐 설계과정은 MOC 설계에 대한 격자 형성, 비점성 해석 및 점성 해석, 경계층 보정 및 점성 해석에 의한 확인 및 결과 도출의 순서로 진행되며, 모든 과정은 자동 일괄 처리토록 작성되었다.

Incorporation of anisotropic scattering into the method of characteristics

  • Rahman, Anisur;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3478-3487
    • /
    • 2022
  • In this study, we incorporate an anisotropic scattering scheme involving spherical harmonics into the method of characteristics (MOC). The neutron transport solution in a light water reactor can be significantly improved because of the impact of an anisotropic scattering source with the MOC flat source approximation. Several problems are selected to verify the proposed scheme and investigate its effects and accuracy. The MOC anisotropic scattering source is based on the expansion of spherical harmonics with Legendre polynomial functions. The angular flux, scattering source, and cross section are expanded in terms of the surface spherical harmonics. Later, the polynomial is expanded to achieve the odd and even parity of the source components. Ultimately, the MOC angular and scalar fluxes are calculated from a combination of two sources. This paper presents various numerical examples that represent the hot and cold conditions of a reactor core with boron concentration, burnable absorbers, and control rod materials, with and without a reflector or baffle. Moreover, a small critical core problem is considered which involves significant neutron leakage at room temperature. We demonstrate that an anisotropic scattering source significantly improves solution accuracy for the small core high-leakage problem, as well as for practical large core analyses.

A lumped parameter method of characteristics approach and multigroup kernels applied to the subgroup self-shielding calculation in MPACT

  • Stimpson, Shane;Liu, Yuxuan;Collins, Benjamin;Clarno, Kevin
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1240-1249
    • /
    • 2017
  • An essential component of the neutron transport solver is the resonance self-shielding calculation used to determine equivalence cross sections. The neutron transport code, MPACT, is currently using the subgroup self-shielding method, in which the method of characteristics (MOC) is used to solve purely absorbing fixed-source problems. Recent efforts incorporating multigroup kernels to the MOC solvers in MPACT have reduced runtime by roughly $2{\times}$. Applying the same concepts for self-shielding and developing a novel lumped parameter approach to MOC, substantial improvements have also been made to the self-shielding computational efficiency without sacrificing any accuracy. These new multigroup and lumped parameter capabilities have been demonstrated on two test cases: (1) a single lattice with quarter symmetry known as VERA (Virtual Environment for Reactor Applications) Progression Problem 2a and (2) a two-dimensional quarter-core slice known as Problem 5a-2D. From these cases, self-shielding computational time was reduced by roughly $3-4{\times}$, with a corresponding 15-20% increase in overall memory burden. An azimuthal angle sensitivity study also shows that only half as many angles are needed, yielding an additional speedup of $2{\times}$. In total, the improvements yield roughly a $7-8{\times}$ speedup. Given these performance benefits, these approaches have been adopted as the default in MPACT.

원심펌프 관로계에 대한 임펄스 응답법 적용 연구 (Impulse response method for a centrifugal pump in pipeline systems)

  • 허지성;김현준;송용석;김상현
    • 상하수도학회지
    • /
    • 제30권5호
    • /
    • pp.481-489
    • /
    • 2016
  • Method of characteristic(MOC) has been widely used as a transient analysis technique for pressurized pipeline systems. There are substantial studies using MOC for the water hammer triggered through instantaneous valve closures, pump stoppage and pump startup for pipelines systems equipped with a centrifugal pump. Considering restrictions of MOC associated with courant number condition for complicated pipeline systems, an impulse response method(IRM) was developed in the frequency domain. this study implements the impact of centrifugal pump using transfer function in frequency domain approach. Using pump performance curve and the affinity law, this study formulated transfer functions which relate complex pressure head at upstream of pump system to that of downstream location. Simulations of simple reservoir-pump-valve system using IRM with formulated transfer function were similar to those obtained through MOC.

Lax-Wendroff 방법을 이용한 4행정 전기점화 기관의 흡.배기관내의 유동 및 소음특성 해석 (Numerical Simulation of Intake and Exhaust Flows and Noise in 4 Stroke S.I. Engine using the Lax-Wendroff Method)

  • 정수진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.693-701
    • /
    • 1998
  • This study presents result of comparison between two other numerical method method of char-acteristics(MOC) and Lax-Wendroff method(LWM) applied at wave action analysis of intake and exhaust pipe in terms of calculated pressure velocity and emitted noise in the time and the fre-quency domain by means of fast Fourier transform analysis. Particularly FCT(Flux Corrected Transport)scheme is appended to LWM to protest unaceptable overshoots occurring near discon-tinuity. The final conclusion of this study is that MOC should be replaced by a second order finite difference approach because of larger contributions due to high frequency components than the results from the method of characteristics. Clear benefits we can get by change are faster calcula-tion higher accuracy conservation of mass and consistent calculation method.

  • PDF

4사이클 전기점화기관에서 흡.배기관내 비정상 유동특성 해석에 관한 연구 (A Study on the Unsteady Flow Characteristics Analysis of Intake and Exhaust Pipe in 4 Cycle Spark-Ignition Engine)

  • 정수진;김태훈;민규식;장형성
    • 한국안전학회지
    • /
    • 제9권2호
    • /
    • pp.3-11
    • /
    • 1994
  • This study discribes result of comparision of two other numerical method, method of characteristics (MOC) and Lax-Wendroff method(LWM) applied at wave action analysis of Intake and exhaust pipe. Partiality FCT(Flux Correct Transport) scheme is appeneded to LWM to protest unacceptable overshoots, occuring near discontinuity. The final conclusion of this study is that MOC should be replaced by a second order finite difference approach(such as the LW method). Clear benefits we can get by change are faster calculation, higher accuracy, conservation of mass and consistent calculation method.

  • PDF

단일추진제 추진시스템의 과도기유체 해석 (A FLUID TRANSIENT ANALYSIS FOR THE PROPELLANT FLOW IN A MONOPROPELLANT PROPULSION SYSTEM)

  • 채종원
    • 한국전산유체공학회지
    • /
    • 제10권2호
    • /
    • pp.69-81
    • /
    • 2005
  • A fluid transient analysis for the propellant flow in a monopropellant propulsion system is conducted by using the method of characteristics(MOC). It reviews algebraic simultaneous equations method and Cramer's rule method utilized to drive the compatible and characteristic equations to understand MOC extensively. The identification of fluid transient phenomena of propulsion system of Koreasat 1 is carried out through parametric studies. The valve response time is one of the dominant parameters governing the fluid transient phenomena. The results show that the shorter closing time induces the greater pressure response amplitude. And it shows that the installation of in-line orifice is effectively to limit the fluid transients in rapid valve response time and at high pressure. But it seems that the effect of orifice weakens at slow valve response time and at low pressures.

단일추진제 추진시스템의 과도기유체 해석 (A fluid transient analysis for the propellant flow in a monopropellant propulsion system)

  • 채종원;한조영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.173-181
    • /
    • 2005
  • A fluid transient analysis for the propellant flow in a monopropellant propulsion system is conducted using the method of characteristics (MOC). Algebraic simultaneous equations method and Clamor's rule method utilized to drive the compatible and characteristic equations are reviewed to understand MOC more extensively. The identification of fluid transient phenomena of propulsion system of Koreasat 1 is carried out through parametric studies. Also this work describes the reason that the propulsion system of Koreasat 1 has no orifice to control flow transients or to limit the initial hydrazine flow rate for the first-pulse firing.

  • PDF